Spectroscopic Investigations of Hydrogen Bond Dynamics in Liquid Water

Spectroscopic Investigations of Hydrogen Bond Dynamics in Liquid Water

Author: Christopher J. Fecko

Publisher:

Published: 2004

Total Pages: 304

ISBN-13:

DOWNLOAD EBOOK

(Cont.) At short times, vibrational dephasing reflects an underdamped 180 fs hydrogen bond oscillation, but the long time behavior indicates collective structural reorganization of the hydrogen bond network a 1.4 ps timescale. The anisotropy decays on timescales of 50 fs and 3 ps, which are attributed to librations and rotational diffusion, respectively. Lastly, I used two-dimensional infrared spectroscopy to investigate the frequency dependence of the dynamics. Preliminary results reflect a distribution of timescales for both local motion and collective reorganization.


Spectroscopic Investigations of Hydrogen Bond Network Structures in Water Clusters

Spectroscopic Investigations of Hydrogen Bond Network Structures in Water Clusters

Author: Kenta Mizuse

Publisher: Springer Science & Business Media

Published: 2013-01-22

Total Pages: 187

ISBN-13: 4431543120

DOWNLOAD EBOOK

The properties and nature of water clusters studied with novel spectroscopic approaches are presented in this thesis. Following a general introduction on the chemistry of water and water clusters, detailed descriptions of the experiments and analyses are given. All the experimental results, including first size-selective spectra of large clusters consisting of 200 water molecules, are presented with corresponding analyses. Hitherto unidentified hydrogen bond network structures, dynamics, and reactivity of various water clusters have been characterized at the molecular level. The main targets of this book are physical chemists and chemical physicists who are interested in water chemistry or cluster chemistry.


Spectroscopy and Computation of Hydrogen-BondedSystems

Spectroscopy and Computation of Hydrogen-BondedSystems

Author: Marek J. Wójcik

Publisher: John Wiley & Sons

Published: 2023-03-27

Total Pages: 548

ISBN-13: 3527349723

DOWNLOAD EBOOK

Comprehensive spectroscopic view of the state-of the-art in theoretical and experimental hydrogen bonding research Spectroscopy and Computation of Hydrogen-Bonded Systems includes diverse research efforts spanning the frontiers of hydrogen bonding as revealed through state-of-the-art spectroscopic and computational methods, covering a broad range of experimental and theoretical methodologies used to investigate and understand hydrogen bonding. The work explores the key quantitative relationships between fundamental vibrational frequencies and hydrogen-bond length/strength and provides an extensive reference for the advancement of scientific knowledge on hydrogen-bonded systems. Theoretical models of vibrational landscapes in hydrogen-bonded systems, as well as kindred studies designed to interpret intricate spectral features in gaseous complexes, liquids, crystals, ices, polymers, and nanocomposites, serve to elucidate the provenance of spectroscopic findings. Results of experimental and theoretical studies on multidimensional proton transfer are also presented. Edited by two highly qualified researchers in the field, sample topics covered in Spectroscopy and Computation of Hydrogen-Bonded Systems include: Quantum-mechanical treatments of tunneling-mediated pathways in enzyme catalysis and molecular-dynamics simulations of structure and dynamics in hydrogen-bonded systems Mechanisms of multiple proton-transfer pathways in hydrogen-bonded clusters and modern spectroscopic tools with synergistic quantum-chemical analyses Mechanistic investigations of deuterium kinetic isotope effects, ab initio path integral methods, and molecular-dynamics simulations Key relationships that exist between fundamental vibrational frequencies and hydrogen-bond length/strength Analogous spectroscopic and semi-empirical computational techniques examining larger hydrogen-bonded systems Reflecting the polymorphic nature of hydrogen bonding and bringing together the latest experimental and computational work in the field, Spectroscopy and Computation of Hydrogen-Bonded Systems is an essential resource for chemists and other scientists involved in projects or research that intersects with the topics covered within.


Hydrogen-Bonded Liquids

Hydrogen-Bonded Liquids

Author: J.C. Dore

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 439

ISBN-13: 9401132747

DOWNLOAD EBOOK

The study of liquids covers a wide range of scientific disciplines, primarily in physics and chemistry. As a result of this disparate activity the links between new developments in remote fields are seldom co-ordinated into a single conference. The objective of the present meeting was to gather together people with different forms of expertise. Previous ASI meetings on the liquid state have been held over an extended period and have occurred on a three-yearly basis. The first meeting in this series was on 'Structure and Dynamics of Liquids' in 1980 and was held on the island of Corsica. The next meeting on 'Molecular liquids: Dynamics and Interactions' was held in Florence in 1983 and was followed by 'Aqueous Solutions' at the Institut d'Etudes Scientifiques de Cargese in 1986. It therefore seemed a natural choice to select Cargese for the next meeting in 1989 and to choose a topic which emphasised a particular area of liquid state studies. Due to our own involvement in collaborative research we considered that 'Hydrogen-bonded liquids' would be an appropriate topic. One of its attractions, was that there was much new material coming from widely disparate investigations and it would be a convenient time to draw together the different strands. The particular interest in water was clearly central to this topic but it was thought desirable to set this development in the wider context of other systems in which hydrogen-bonding plays a significant role.


Visualization of Hydrogen-Bond Dynamics

Visualization of Hydrogen-Bond Dynamics

Author: Takashi Kumagai

Publisher: Springer

Published: 2014-10-15

Total Pages: 0

ISBN-13: 9784431547358

DOWNLOAD EBOOK

The hydrogen bond represents an important interaction between molecules, and the dynamics of hydrogen bonds in water create an ever-present question associated with the process of chemical and biological reactions. In spite of numerous studies, the process remains poorly understood at the microscopic level because hydrogen-bond dynamics, such as bond rearrangements and hydrogen/proton transfer reactions, are extremely difficult to probe. Those studies have been carried out by means of spectroscopic methods where the signal stems from the ensemble of a system and the hydrogen-bond dynamics were inferred indirectly. This book addresses the direct imaging of hydrogen-bond dynamics within water-based model systems assembled on a metal surface, using a scanning tunneling microscope (STM). The dynamics of individual hydrogen bonds in water clusters, hydroxyl clusters, and water-hydroxyl complexes are investigated in conjunction with density functional theory. In these model systems, quantum dynamics of hydrogen bonds, such as tunneling and zero-point nuclear motion, are observed in real space. Most notably, hydrogen atom relay reactions, which are frequently invoked across many fields of chemistry, are visualized and controlled by STM. This work presents a means of studying hydrogen-bond dynamics at the single-molecule level, providing an important contribution to wide fields beyond surface chemistry.


The Hydrogen Bond and the Water Molecule

The Hydrogen Bond and the Water Molecule

Author: Yves Marechal

Publisher: Elsevier

Published: 2006-12-11

Total Pages: 333

ISBN-13: 0080469299

DOWNLOAD EBOOK

The Hydrogen Bond and the Water Molecule offers a synthesis of what is known and currently being researched on the topic of hydrogen bonds and water molecules. The most simple water molecular, H2O, is a fascinating but poorly understood molecule. Its unique ability to attract an exceptionally large number of hydrogen bonds induces the formation of a dense "hydrogen bond network" that has the potential to modify the properties of the surrounding molecules and their reactivities. The crucial role that water molecules play is described in this book. The author begins by providing an overview of the thermodynamical and structural properties of H-bonds before examining their much less known dynamical properties, which makes them appear as centres of reactivity. Methods used to observe these components are also reviewed. In the second part of the book the role played by the dense H-bond network developed by H2O molecules is examined. First in ice, where it has important atmospheric consequences, then in liquid water, and finally in macromolecules where it sheds some original light on the fundamental question "How is it that without water and hydrogen bonds life would not exist?". This book will be of interest to researchers in the fields of physics, chemistry, biochemistry and molecular biology. It can also serve as a teaching aid for students attending course in chemical physics, chemistry or molecular biology. Engineers involved the water industry would benefit from reading this book, as would scientists working in pharmaceutics, cosmetics and materials. * overview of what is known and being researched on the topic of hydrogen bonds and water molecules * reviews methods used to observe interactions between water molecules and hydrogen bonds * examines role of H-bond network developed by H2O molecules


Snow, Ice And Other Wonders Of Water: A Tribute To The Hydrogen Bond

Snow, Ice And Other Wonders Of Water: A Tribute To The Hydrogen Bond

Author: Ivar Olovsson

Publisher: World Scientific

Published: 2015-12-18

Total Pages: 95

ISBN-13: 9814749389

DOWNLOAD EBOOK

The book illustrates the fascinating world of the different forms of water — from ice and snow to liquid water. The water molecule, H2O, is the second most common molecule in the Universe (behind hydrogen, H2) and ice is the most abundant solid material. Snow and ice appear in a countless large number of different shapes and with properties which can be quite different. Detailed knowledge of the properties of snow is of great importance for the Sami people involved in reindeer herding and several hundred names are used to characterize the different types.The properties of ice and liquid water are very special and unique in several respects. In contrast to most other substances, the density of ice is lower than that of liquid water, which has many very important consequences in our daily life. Water plays a unique role in chemistry and although tremendous research has been spent on this seemingly simple substance, there are still many unsolved questions about the structure of liquid water. The special properties of water are due to hydrogen bonding between the H2O molecules, and this book may be seen as a tribute to the hydrogen bond. The general properties of the hydrogen bond are treated in three separate papers. The hydrogen bond is of fundamental importance in biological systems since all living matter has evolved from and exists in an aqueous environment and hydrogen bonds are involved in most biological processes. There is a hundred times more water molecules in our bodies than the sum of all the other molecules put together.


Hydrogen Bond Networks

Hydrogen Bond Networks

Author: M.C. Bellissent-Funel

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 564

ISBN-13: 9401583323

DOWNLOAD EBOOK

The almost universal presence of water in our everyday lives and the very `common' nature of its presence and properties possibly deflects attention from the fact that it has a number of very unusual characteristics which, furthermore, are found to be extremely sensitive to physical parameters, chemical environment and other influences. Hydrogen-bonding effects, too, are not restricted to water, so it is necessary to investigate other systems as well, in order to understand the characteristics in a wider context. Hydrogen Bond Networks reflects the diversity and relevance of water in subjects ranging from the fundamentals of condensed matter physics, through aspects of chemical reactivity to structure and function in biological systems.