Spectroscopic Diagnostics of High Temperature Plasmas, January 1, 1991--December 31, 1991

Spectroscopic Diagnostics of High Temperature Plasmas, January 1, 1991--December 31, 1991

Author:

Publisher:

Published: 1991

Total Pages: 4

ISBN-13:

DOWNLOAD EBOOK

During 1991, the activities of the John Hopkins University Plasma Spectroscopy Group have covered several areas of research, in the domain of XUV spectroscopy of magnetically confined fusion plasmas. While the main effort concentrated on the development of novel diagnostics which utilize Layered Synthetic Microstructures (LSMs) as the dispersive/filtering elements, work has been done in the area of detector development and the physics of the tokamak edge plasma. An XUV monochromator for the 20--200Å range, which uses flat LSMs, has been built and is currently operated on the D3-D tokamak at General Atomics in San Diego. A design for a follow-up experiment at D3-D is now in progress. As a preliminary step toward tokamak plasma imaging in the XUV wavelength range using curved LSM coated substrates, a prototype XUV camera was built and operated in our laboratory in image the A1 3 emission at?-175Å from a Penning Ionization Discharge plasma. Based on these laboratory results, the design of the XUV camera, which will image plasma in the Phaedrus T tokamak O VI emission (150Å), has been completed. This instrument is presently under construction. Also a detailed design of a system composed of four LSM based imaging devices for N{sub e}(0) and T{sub e}(0) fluctuation measurements on TEXT has been completed. The accuracy and the uniformity of the LSM coatings on flat and small curved surfaces used in the above-mentioned instruments have been evaluated in our laboratory using an in-house built calibration facility and at the SURF II synchrotron at the National Institute of Standards and Technology.


Spectroscopic Diagnostics of High Temperature Plasmas. [Annual Report].

Spectroscopic Diagnostics of High Temperature Plasmas. [Annual Report].

Author:

Publisher:

Published: 1990

Total Pages: 57

ISBN-13:

DOWNLOAD EBOOK

A three-year research program for the development of novel XUV spectroscopic diagnostics for magnetically confined fusion plasmas is proposed. The new diagnostic system will use layered synthetic microstructures (LSM) coated, flat and curved surfaces as dispersive elements in spectrometers and narrow band XUV filter arrays. In the framework of the proposed program we will develop impurity monitors for poloidal and toroidal resolved measurements on PBX-M and Alcator C-Mod, imaging XUV spectrometers for electron density and temperature fluctuation measurements in the hot plasma core in TEXT or other similar tokamaks and plasma imaging devices in soft x-ray light for impurity behavior studies during RF heating on Phaedrus T and carbon pellet ablation in Alcator C-Mod. Recent results related to use of multilayer in XUV plasma spectroscopy are presented. We also discuss the latest results reviewed to q{sub o} and local poloidal field measurements using Zeeman polarimetry.


Kinetics and Spectroscopy of Low Temperature Plasmas

Kinetics and Spectroscopy of Low Temperature Plasmas

Author: Jorge Loureiro

Publisher: Springer

Published: 2016-06-22

Total Pages: 460

ISBN-13: 3319092537

DOWNLOAD EBOOK

This is a comprehensive textbook designed for graduate and advanced undergraduate students. Both authors rely on more than 20 years of teaching experience in renowned Physics Engineering courses to write this book addressing the students’ needs. Kinetics and Spectroscopy of Low Temperature Plasmas derives in a full self-consistent way the electron kinetic theory used to describe low temperature plasmas created in the laboratory with an electrical discharge, and presents the main optical spectroscopic diagnostics used to characterize such plasmas. The chapters with the theoretical contents make use of a deductive approach in which the electron kinetic theory applied to plasmas with basis on the electron Boltzmann equation is derived from the basic concepts of Statistical and Plasma Physics. On the other hand, the main optical spectroscopy diagnostics used to characterize experimentally such plasmas are presented and justified from the point of view of the Atomic and Molecular Physics. Low temperature plasmas (LTP) are partially ionized gases with a broad use in many technological applications such as microelectronics, light sources, lasers, biology and medicine. LTPs lead to the production of atomic and molecular excited states, chemically reactive radicals, and activated surface sites, which are in the origin, among others, of the deposition of thin films, advanced nanotechnology products, solar cells, highly efficient combustion motors, and treatment of cancer cells.


Spectroscopic Diagnostics of High Temperature Plasmas

Spectroscopic Diagnostics of High Temperature Plasmas

Author:

Publisher:

Published: 1990

Total Pages: 57

ISBN-13:

DOWNLOAD EBOOK

A three-year research program for the development of novel XUV spectroscopic diagnostics for magnetically confined fusion plasmas is proposed. The new diagnostic system will use layered synthetic microstructures (LSM) coated, flat and curved surfaces as dispersive elements in spectrometers and narrow band XUV filter arrays. In the framework of the proposed program we will develop impurity monitors for poloidal and toroidal resolved measurements on PBX-M and Alcator C-Mod, imaging XUV spectrometers for electron density and temperature fluctuation measurements in the hot plasma core in TEXT or other similar tokamaks and plasma imaging devices in soft x-ray light for impurity behavior studies during RF heating on Phaedrus T and carbon pellet ablation in Alcator C-Mod. Recent results related to use of multilayer in XUV plasma spectroscopy are presented. We also discuss the latest results reviewed to q{sub o} and local poloidal field measurements using Zeeman polarimetry.


Topics in Plasma Diagnostics

Topics in Plasma Diagnostics

Author: I. Podgornyi

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 225

ISBN-13: 1468407244

DOWNLOAD EBOOK

The present volume is essentially a qualitative survey of modern trends in the diagnostics of high-temperature plasmas, with particular orientation toward laboratory plasmas of interest in connection with research in controlled thermonuclear fusion. Among the broad topics considered are probe diagnostics, optical methods (including the use of lasers and holography), microwave diagnostics, and diagnostics with particle beams. Having infor mation on these methods available in compact form and in one place, as is the case in the present volume, should make it pos sible to evaluate different diagnostic approaches to specific prob lems. The volume will be useful as an introduction for advanced students making their first contact with experimental plasma physics and for physicists and engineers who are entering the field and desire a rapid survey of principles and modern trends in the diagnostics of high-temperature plasmas. v Foreword to the American Edition The material in this book is based on lectures given at Mos cow State University. It is intended to acquaint the reader with the basic aspects of plasma diagnostics and contains information re quired for the experimental physicist who wishes to carry out straightforward measurements of laboratory plasmas. It will be evident that in choosing the material we have been guided pri marily by the scientific interests of the author, and the great bulk of the material is based on work carried out in the USSR.


Introduction to Plasma Spectroscopy

Introduction to Plasma Spectroscopy

Author: Hans-Joachim Kunze

Publisher: Springer Science & Business Media

Published: 2009-09-18

Total Pages: 242

ISBN-13: 3642022332

DOWNLOAD EBOOK

Although based on lectures given for graduate students and postgraduates starting in plasma physics, this concise introduction to the fundamental processes and tools is as well directed at established researchers who are newcomers to spectroscopy and seek quick access to the diagnostics of plasmas ranging from low- to high-density technical systems at low temperatures, as well as from low- to high-density hot plasmas. Basic ideas and fundamental concepts are introduced as well as typical instrumentation from the X-ray to the infrared spectral regions. Examples, techniques and methods illustrate the possibilities. This book directly addresses the experimentalist who actually has to carry out the experiments and their interpretation. For that reason about half of the book is devoted to experimental problems, the instrumentation, components, detectors and calibration.


Extreme Ultraviolet and Soft X-ray Diagnostics of High-temperature Plasmas

Extreme Ultraviolet and Soft X-ray Diagnostics of High-temperature Plasmas

Author:

Publisher:

Published: 1986

Total Pages: 14

ISBN-13:

DOWNLOAD EBOOK

This report describes recent progress and plans for calendar year 1987 in the Johns Hopkins University program to develop and improve spectroscopic diagnostics for the high temperature plasmas used in magnetic fusion research. An EUV spectrograph which provides time resolved spectra along fifteen chords of a plasma device has been completed and evaluation on DIII-D will began in late 1986. Other instrumentation work includes the evaluation of a sensitive detector for ion temperature/velocity distribution determinations and a feasibility study of Zeeman polarimetry for determining magnetic fields. A comprehensive data set taken on the TEXT tokamak is undergoing analysis as a means of improving the ionic parameters used in diagnostic studies and to expand the capabilities of existing instruments. Potential new advanced in spectroscopic technology are being monitored to determine if they provide advantages for fusion research.


Extreme Ultraviolet and Soft X-ray Diagnostics of High-temperature Plasmas. Progress Report

Extreme Ultraviolet and Soft X-ray Diagnostics of High-temperature Plasmas. Progress Report

Author:

Publisher:

Published: 1986

Total Pages: 14

ISBN-13:

DOWNLOAD EBOOK

This report describes recent progress and plans for calendar year 1987 in the Johns Hopkins University program to develop and improve spectroscopic diagnostics for the high temperature plasmas used in magnetic fusion research. An EUV spectrograph which provides time resolved spectra along fifteen chords of a plasma device has been completed and evaluation on DIII-D will began in late 1986. Other instrumentation work includes the evaluation of a sensitive detector for ion temperature/velocity distribution determinations and a feasibility study of Zeeman polarimetry for determining magnetic fields. A comprehensive data set taken on the TEXT tokamak is undergoing analysis as a means of improving the ionic parameters used in diagnostic studies and to expand the capabilities of existing instruments. Potential new advanced in spectroscopic technology are being monitored to determine if they provide advantages for fusion research.