Spectral Methods of Automorphic Forms

Spectral Methods of Automorphic Forms

Author: Henryk Iwaniec

Publisher: American Mathematical Society, Revista Matemática Iberoamericana (RMI), Madrid, Spain

Published: 2021-11-17

Total Pages: 220

ISBN-13: 1470466228

DOWNLOAD EBOOK

Automorphic forms are one of the central topics of analytic number theory. In fact, they sit at the confluence of analysis, algebra, geometry, and number theory. In this book, Henryk Iwaniec once again displays his penetrating insight, powerful analytic techniques, and lucid writing style. The first edition of this book was an underground classic, both as a textbook and as a respected source for results, ideas, and references. Iwaniec treats the spectral theory of automorphic forms as the study of the space of $L^2$ functions on the upper half plane modulo a discrete subgroup. Key topics include Eisenstein series, estimates of Fourier coefficients, Kloosterman sums, the Selberg trace formula and the theory of small eigenvalues. Henryk Iwaniec was awarded the 2002 Cole Prize for his fundamental contributions to number theory.


Scattering Theory for Automorphic Functions

Scattering Theory for Automorphic Functions

Author: Peter D. Lax

Publisher: Princeton University Press

Published: 1976

Total Pages: 316

ISBN-13: 9780691081847

DOWNLOAD EBOOK

The application by Fadeev and Pavlov of the Lax-Phillips scattering theory to the automorphic wave equation led Professors Lax and Phillips to reexamine this development within the framework of their theory. This volume sets forth the results of that work in the form of new or more straightforward treatments of the spectral theory of the Laplace-Beltrami operator over fundamental domains of finite area; the meromorphic character over the whole complex plane of the Eisenstein series; and the Selberg trace formula. CONTENTS: 1. Introduction. 2. An abstract scattering theory. 3. A modified theory for second order equations with an indefinite energy form. 4. The Laplace-Beltrami operator for the modular group. 5. The automorphic wave equation. 6. Incoming and outgoing subspaces for the automorphic wave equations. 7. The scattering matrix for the automorphic wave equation. 8. The general case. 9. The Selberg trace formula.


Spectral Theory of the Riemann Zeta-Function

Spectral Theory of the Riemann Zeta-Function

Author: Yoichi Motohashi

Publisher: Cambridge University Press

Published: 1997-09-11

Total Pages: 240

ISBN-13: 1316582507

DOWNLOAD EBOOK

The Riemann zeta function is one of the most studied objects in mathematics, and is of fundamental importance. In this book, based on his own research, Professor Motohashi shows that the function is closely bound with automorphic forms and that many results from there can be woven with techniques and ideas from analytic number theory to yield new insights into, and views of, the zeta function itself. The story starts with an elementary but unabridged treatment of the spectral resolution of the non-Euclidean Laplacian and the trace formulas. This is achieved by the use of standard tools from analysis rather than any heavy machinery, forging a substantial aid for beginners in spectral theory as well. These ideas are then utilized to unveil an image of the zeta-function, first perceived by the author, revealing it to be the main gem of a necklace composed of all automorphic L-functions. In this book, readers will find a detailed account of one of the most fascinating stories in the development of number theory, namely the fusion of two main fields in mathematics that were previously studied separately.


Spectral Theory of the Riemann Zeta-Function

Spectral Theory of the Riemann Zeta-Function

Author: Yoichi Motohashi

Publisher: Cambridge University Press

Published: 1997-09-11

Total Pages: 246

ISBN-13: 0521445205

DOWNLOAD EBOOK

The Riemann zeta function is one of the most studied objects in mathematics, and is of fundamental importance. In this book, based on his own research, Professor Motohashi shows that the function is closely bound with automorphic forms and that many results from there can be woven with techniques and ideas from analytic number theory to yield new insights into, and views of, the zeta function itself. The story starts with an elementary but unabridged treatment of the spectral resolution of the non-Euclidean Laplacian and the trace formulas. This is achieved by the use of standard tools from analysis rather than any heavy machinery, forging a substantial aid for beginners in spectral theory as well. These ideas are then utilized to unveil an image of the zeta-function, first perceived by the author, revealing it to be the main gem of a necklace composed of all automorphic L-functions. In this book, readers will find a detailed account of one of the most fascinating stories in the development of number theory, namely the fusion of two main fields in mathematics that were previously studied separately.


Spectral Decomposition and Eisenstein Series

Spectral Decomposition and Eisenstein Series

Author: Colette Moeglin

Publisher: Cambridge University Press

Published: 1995-11-02

Total Pages: 382

ISBN-13: 9780521418935

DOWNLOAD EBOOK

A self-contained introduction to automorphic forms, and Eisenstein series and pseudo-series, proving some of Langlands' work at the intersection of number theory and group theory.


Families of Automorphic Forms

Families of Automorphic Forms

Author: Roelof W. Bruggeman

Publisher: Springer Science & Business Media

Published: 2010-02-28

Total Pages: 320

ISBN-13: 3034603363

DOWNLOAD EBOOK

Automorphic forms on the upper half plane have been studied for a long time. Most attention has gone to the holomorphic automorphic forms, with numerous applications to number theory. Maass, [34], started a systematic study of real analytic automorphic forms. He extended Hecke’s relation between automorphic forms and Dirichlet series to real analytic automorphic forms. The names Selberg and Roelcke are connected to the spectral theory of real analytic automorphic forms, see, e. g. , [50], [51]. This culminates in the trace formula of Selberg, see, e. g. , Hejhal, [21]. Automorphicformsarefunctionsontheupperhalfplanewithaspecialtra- formation behavior under a discontinuous group of non-euclidean motions in the upper half plane. One may ask how automorphic forms change if one perturbs this group of motions. This question is discussed by, e. g. , Hejhal, [22], and Phillips and Sarnak, [46]. Hejhal also discusses the e?ect of variation of the multiplier s- tem (a function on the discontinuous group that occurs in the description of the transformation behavior of automorphic forms). In [5]–[7] I considered variation of automorphic forms for the full modular group under perturbation of the m- tiplier system. A method based on ideas of Colin de Verdi` ere, [11], [12], gave the meromorphic continuation of Eisenstein and Poincar ́ e series as functions of the eigenvalue and the multiplier system jointly. The present study arose from a plan to extend these results to much more general groups (discrete co?nite subgroups of SL (R)).