Spectral Problems Associated with Corner Singularities of Solutions to Elliptic Equations

Spectral Problems Associated with Corner Singularities of Solutions to Elliptic Equations

Author: Vladimir Kozlov

Publisher: American Mathematical Soc.

Published: 2001

Total Pages: 449

ISBN-13: 0821827278

DOWNLOAD EBOOK

This book focuses on the analysis of eigenvalues and eigenfunctions that describe singularities of solutions to elliptic boundary value problems in domains with corners and edges. The authors treat both classical problems of mathematical physics and general elliptic boundary value problems. The volume is divided into two parts: The first is devoted to the power-logarithmic singularities of solutions to classical boundary value problems of mathematical physics. The second deals with similar singularities for higher order elliptic equations and systems. Chapter 1 collects basic facts concerning operator pencils acting in a pair of Hilbert spaces. Related properties of ordinary differential equations with constant operator coefficients are discussed and connections with the theory of general elliptic boundary value problems in domains with conic vertices are outlined. New results are presented. Chapter 2 treats the Laplace operator as a starting point and a model for the subsequent study of angular and conic singularities of solutions. Chapter 3 considers the Dirichlet boundary condition beginning with the plane case and turning to the space problems. Chapter 4 investigates some mixed boundary conditions. The Stokes system is discussed in Chapters 5 and 6, and Chapter 7 concludes with the Dirichlet problem for the polyharmonic operator. Chapter 8 studies the Dirichlet problem for general elliptic differential equations of order 2m in an angle. In Chapter 9, an asymptotic formula for the distribution of eigenvalues of operator pencils corresponding to general elliptic boundary value problems in an angle is obtained. Chapters 10 and 11 discuss the Dirichlet problem for elliptic systems of differential equations of order 2 in an n-dimensional cone. Chapter 12 studies the Neumann problem for general elliptic systems, in particular with eigenvalues of the corresponding operator pencil in the strip $\mid {\Re} \lambda - m + /2n \mid \leq 1/2$. It is shown that only integer numbers contained in this strip are eigenvalues. Applications are placed within chapter introductions and as special sections at the end of chapters. Prerequisites include standard PDE and functional analysis courses.


Analysis and Simulation of Multifield Problems

Analysis and Simulation of Multifield Problems

Author: Wolfgang L. Wendland

Publisher: Springer Science & Business Media

Published: 2012-11-10

Total Pages: 389

ISBN-13: 3540365273

DOWNLOAD EBOOK

The analysis and simulation of multifield problems have recently become one of the most actual and vivid areas of research. Although the individual subproblems of complex technical and physical phenomena often are understood separately, their interaction and coupling create not only new difficulties but also a complete new level and quality of interacting coupled field problems. Presented by leading experts this book includes recent results in these fields from the International Conference on Multifield Problems, April 8-10, 2002 at the University of Stuttgart, Germany.


Multi-Layer Potentials and Boundary Problems

Multi-Layer Potentials and Boundary Problems

Author: Irina Mitrea

Publisher: Springer

Published: 2013-01-05

Total Pages: 430

ISBN-13: 3642326668

DOWNLOAD EBOOK

Many phenomena in engineering and mathematical physics can be modeled by means of boundary value problems for a certain elliptic differential operator in a given domain. When the differential operator under discussion is of second order a variety of tools are available for dealing with such problems, including boundary integral methods, variational methods, harmonic measure techniques, and methods based on classical harmonic analysis. When the differential operator is of higher-order (as is the case, e.g., with anisotropic plate bending when one deals with a fourth order operator) only a few options could be successfully implemented. In the 1970s Alberto Calderón, one of the founders of the modern theory of Singular Integral Operators, advocated the use of layer potentials for the treatment of higher-order elliptic boundary value problems. The present monograph represents the first systematic treatment based on this approach. This research monograph lays, for the first time, the mathematical foundation aimed at solving boundary value problems for higher-order elliptic operators in non-smooth domains using the layer potential method and addresses a comprehensive range of topics, dealing with elliptic boundary value problems in non-smooth domains including layer potentials, jump relations, non-tangential maximal function estimates, multi-traces and extensions, boundary value problems with data in Whitney–Lebesque spaces, Whitney–Besov spaces, Whitney–Sobolev- based Lebesgue spaces, Whitney–Triebel–Lizorkin spaces,Whitney–Sobolev-based Hardy spaces, Whitney–BMO and Whitney–VMO spaces.


Numerical Mathematics and Advanced Applications ENUMATH 2017

Numerical Mathematics and Advanced Applications ENUMATH 2017

Author: Florin Adrian Radu

Publisher: Springer

Published: 2019-01-05

Total Pages: 993

ISBN-13: 3319964151

DOWNLOAD EBOOK

This book collects many of the presented papers, as plenary presentations, mini-symposia invited presentations, or contributed talks, from the European Conference on Numerical Mathematics and Advanced Applications (ENUMATH) 2017. The conference was organized by the University of Bergen, Norway from September 25 to 29, 2017. Leading experts in the field presented the latest results and ideas in the designing, implementation, and analysis of numerical algorithms as well as their applications to relevant, societal problems. ENUMATH is a series of conferences held every two years to provide a forum for discussing basic aspects and new trends in numerical mathematics and scientific and industrial applications. These discussions are upheld at the highest level of international expertise. The first ENUMATH conference was held in Paris in 1995 with successive conferences being held at various locations across Europe, including Heidelberg (1997), Jyvaskyla (1999), lschia Porto (2001), Prague (2003), Santiago de Compostela (2005), Graz (2007), Uppsala (2009), Leicester (2011), Lausanne (2013), and Ankara (2015).


Finite Element Error Analysis for PDE-constrained Optimal Control Problems

Finite Element Error Analysis for PDE-constrained Optimal Control Problems

Author: Dieter Sirch

Publisher: Logos Verlag Berlin GmbH

Published: 2010

Total Pages: 166

ISBN-13: 3832525572

DOWNLOAD EBOOK

Subject of this work is the analysis of numerical methods for the solution of optimal control problems governed by elliptic partial differential equations. Such problems arise, if one does not only want to simulate technical or physical processes but also wants to optimize them with the help of one or more influence variables. In many practical applications these influence variables, so called controls, cannot be chosen arbitrarily, but have to fulfill certain inequality constraints. The numerical treatment of such control constrained optimal control problems requires a discretization of the underlying infinite dimensional function spaces. To guarantee the quality of the numerical solution one has to estimate and to quantify the resulting approximation errors. In this thesis a priori error estimates for finite element discretizations are proved in case of corners or edges in the underlying domain and nonsmooth coefficients in the partial differential equation. These facts influence the regularity properties of the solution and require adapted meshes to get optimal convergence rates. Isotropic and anisotropic refinement strategies are given and error estimates in polygonal and prismatic domains are proved. The theoretical results are confirmed by numerical tests.


Advances in Solid and Fracture Mechanics

Advances in Solid and Fracture Mechanics

Author: Holm Altenbach

Publisher: Springer Nature

Published: 2022-11-08

Total Pages: 302

ISBN-13: 3031183932

DOWNLOAD EBOOK

This book presents a collection of articles reporting the current challenges in solid and fracture mechanics. The book is devoted to the 90th birthday of academician Nikita F. Morozov—a well-known specialist in the field of solid and fracture mechanics.


Analysis, Partial Differential Equations and Applications

Analysis, Partial Differential Equations and Applications

Author: Alberto Cialdea

Publisher: Springer Science & Business Media

Published: 2010-01-14

Total Pages: 342

ISBN-13: 3764398981

DOWNLOAD EBOOK

This volume includes several invited lectures given at the International Workshop "Analysis, Partial Differential Equations and Applications", held at the Mathematical Department of Sapienza University of Rome, on the occasion of the 70th birthday of Vladimir G. Maz'ya, a renowned mathematician and one of the main experts in the field of pure and applied analysis. The book aims at spreading the seminal ideas of Maz'ya to a larger audience in faculties of sciences and engineering. In fact, all articles were inspired by previous works of Maz'ya in several frameworks, including classical and contemporary problems connected with boundary and initial value problems for elliptic, hyperbolic and parabolic operators, Schrödinger-type equations, mathematical theory of elasticity, potential theory, capacity, singular integral operators, p-Laplacians, functional analysis, and approximation theory. Maz'ya is author of more than 450 papers and 20 books. In his long career he obtained many astonishing and frequently cited results in the theory of harmonic potentials on non-smooth domains, potential and capacity theories, spaces of functions with bounded variation, maximum principle for higher-order elliptic equations, Sobolev multipliers, approximate approximations, etc. The topics included in this volume will be particularly useful to all researchers who are interested in achieving a deeper understanding of the large expertise of Vladimir Maz'ya.


Spherical Harmonics and Approximations on the Unit Sphere: An Introduction

Spherical Harmonics and Approximations on the Unit Sphere: An Introduction

Author: Kendall Atkinson

Publisher: Springer Science & Business Media

Published: 2012-02-17

Total Pages: 253

ISBN-13: 3642259820

DOWNLOAD EBOOK

These notes provide an introduction to the theory of spherical harmonics in an arbitrary dimension as well as an overview of classical and recent results on some aspects of the approximation of functions by spherical polynomials and numerical integration over the unit sphere. The notes are intended for graduate students in the mathematical sciences and researchers who are interested in solving problems involving partial differential and integral equations on the unit sphere, especially on the unit sphere in three-dimensional Euclidean space. Some related work for approximation on the unit disk in the plane is also briefly discussed, with results being generalizable to the unit ball in more dimensions.


Around the Research of Vladimir Maz'ya II

Around the Research of Vladimir Maz'ya II

Author: Ari Laptev

Publisher: Springer Science & Business Media

Published: 2009-12-05

Total Pages: 404

ISBN-13: 1441913432

DOWNLOAD EBOOK

Topics of this volume are close to scientific interests of Professor Maz'ya and use, directly or indirectly, the fundamental influential Maz'ya's works penetrating, in a sense, the theory of PDEs. In particular, recent advantages in the study of semilinear elliptic equations, stationary Navier-Stokes equations, the Stokes system in convex polyhedra, periodic scattering problems, problems with perturbed boundary at a conic point, singular perturbations arising in elliptic shells and other important problems in mathematical physics are presented.


Arithmetic Differential Equations

Arithmetic Differential Equations

Author: Alexandru Buium

Publisher: American Mathematical Soc.

Published: 2005

Total Pages: 346

ISBN-13: 0821838628

DOWNLOAD EBOOK

For most of the book the only prerequisites are the basic facts of algebraic geometry and number theory."--BOOK JACKET.