Spectral Methods in Soliton Equations

Spectral Methods in Soliton Equations

Author: I D Iliev

Publisher: CRC Press

Published: 1994-11-21

Total Pages: 412

ISBN-13: 9780582239630

DOWNLOAD EBOOK

Soliton theory as a method for solving some classes of nonlinear evolution equations (soliton equations) is one of the most actively developing topics in mathematical physics. This book presents some spectral theory methods for the investigation of soliton equations ad the inverse scattering problems related to these equations. The authors give the theory of expansions for the Sturm-Liouville operator and the Dirac operator. On this basis, the spectral theory of recursion operators generating Korteweg-de Vries type equations is presented and the Ablowitz-Kaup-Newell-Segur scheme, through which the inverse scattering method could be understood as a Fourier-type transformation, is considered. Following these ideas, the authors investigate some of the questions related to inverse spectral problems, i.e. uniqueness theorems, construction of explicit solutions and approximative methods for solving inverse scattering problems. A rigorous investigation of the stability of soliton solutions including solitary waves for equations which do not allow integration within inverse scattering method is also presented.


Spectral Methods

Spectral Methods

Author: Claudio Canuto

Publisher: Springer Science & Business Media

Published: 2007-09-23

Total Pages: 585

ISBN-13: 3540307265

DOWNLOAD EBOOK

Since the publication of "Spectral Methods in Fluid Dynamics" 1988, spectral methods have become firmly established as a mainstream tool for scientific and engineering computation. The authors of that book have incorporated into this new edition the many improvements in the algorithms and the theory of spectral methods that have been made since then. This latest book retains the tight integration between the theoretical and practical aspects of spectral methods, and the chapters are enhanced with material on the Galerkin with numerical integration version of spectral methods. The discussion of direct and iterative solution methods is also greatly expanded.


Spectral Methods

Spectral Methods

Author: Jie Shen

Publisher: Springer Science & Business Media

Published: 2011-08-25

Total Pages: 481

ISBN-13: 3540710418

DOWNLOAD EBOOK

Along with finite differences and finite elements, spectral methods are one of the three main methodologies for solving partial differential equations on computers. This book provides a detailed presentation of basic spectral algorithms, as well as a systematical presentation of basic convergence theory and error analysis for spectral methods. Readers of this book will be exposed to a unified framework for designing and analyzing spectral algorithms for a variety of problems, including in particular high-order differential equations and problems in unbounded domains. The book contains a large number of figures which are designed to illustrate various concepts stressed in the book. A set of basic matlab codes has been made available online to help the readers to develop their own spectral codes for their specific applications.


Solitons In Multidimensions: Inverse Spectral Transform Method

Solitons In Multidimensions: Inverse Spectral Transform Method

Author: B G Konopelchenko

Publisher: World Scientific

Published: 1993-04-30

Total Pages: 304

ISBN-13: 9814518069

DOWNLOAD EBOOK

The book is devoted to the mathematical theory of soliton phenomena on the plane. The inverse spectral transform method which is a main tool for the study of the (2+1)-dimensional soliton equation is reviewed. The ∂-problem and the Riemann-Hilbert problem method are discussed. Several basic examples of soliton equations are considered in detail. This volume is addressed both to the nonexpert and to the researcher in the field. This is the first literature dealing specifically with multidimensional solition equations.


Spectral Methods in Quantum Field Theory

Spectral Methods in Quantum Field Theory

Author: Noah Graham

Publisher: Springer Science & Business Media

Published: 2009-05-08

Total Pages: 187

ISBN-13: 3642001386

DOWNLOAD EBOOK

In this monograph we apply scattering theory methods to calculations in quantum ?eld theory, with a particular focus on properties of the quantum vacuum. These methods will provide e?cient and reliable solutions to a - riety of problems in quantum ?eld theory. Our approach will also elucidate in a concrete context many of the subtleties of quantum ?eld theory, such as divergences, regularization, and renormalization, by connecting them to more familiar results in quantum mechanics. We will use tools of scattering theory to characterize the spectrum of energyeigenstatesinapotentialbackground,hencethetermspectralmethods. This mode spectrum comprises both discrete bound states and a continuum of scattering states. We develop a powerful formalism that parameterizes the e?ects of the continuum by the density of states, which we compute from scattering data. Summing the zero-point energies of these modes gives the energy of the quantum vacuum, which is one of the central quantities we study.Althoughthemostcommonlystudiedbackgroundpotentialsarisefrom static soliton solutions to the classical equations of motion, these methods are not limited to such cases.


Basic Methods Of Soliton Theory

Basic Methods Of Soliton Theory

Author: Ivan V Cherednik

Publisher: World Scientific

Published: 1996-08-22

Total Pages: 264

ISBN-13: 9814499005

DOWNLOAD EBOOK

In the 25 years of its existence Soliton Theory has drastically expanded our understanding of “integrability” and contributed a lot to the reunification of Mathematics and Physics in the range from deep algebraic geometry and modern representation theory to quantum field theory and optical transmission lines.The book is a systematic introduction to the Soliton Theory with an emphasis on its background and algebraic aspects. It is the first one devoted to the general matrix soliton equations, which are of great importance for the foundations and the applications.Differential algebra (local conservation laws, Bäcklund-Darboux transforms), algebraic geometry (theta and Baker functions), and the inverse scattering method (Riemann-Hilbert problem) with well-grounded preliminaries are applied to various equations including principal chiral fields, Heisenberg magnets, Sin-Gordon, and Nonlinear Schrödinger equation.


Spectral Methods

Spectral Methods

Author: Claudio Canuto

Publisher: Springer Science & Business Media

Published: 2007-06-30

Total Pages: 616

ISBN-13: 3540307281

DOWNLOAD EBOOK

Following up the seminal Spectral Methods in Fluid Dynamics, Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics contains an extensive survey of the essential algorithmic and theoretical aspects of spectral methods for complex geometries. These types of spectral methods were only just emerging at the time the earlier book was published. The discussion of spectral algorithms for linear and nonlinear fluid dynamics stability analyses is greatly expanded. The chapter on spectral algorithms for incompressible flow focuses on algorithms that have proven most useful in practice, has much greater coverage of algorithms for two or more non-periodic directions, and shows how to treat outflow boundaries. Material on spectral methods for compressible flow emphasizes boundary conditions for hyperbolic systems, algorithms for simulation of homogeneous turbulence, and improved methods for shock fitting. This book is a companion to Spectral Methods: Fundamentals in Single Domains.