Special Values of the Hypergeometric Series

Special Values of the Hypergeometric Series

Author: Akihito Ebisu

Publisher: American Mathematical Soc.

Published: 2017-07-13

Total Pages: 108

ISBN-13: 1470425335

DOWNLOAD EBOOK

In this paper, the author presents a new method for finding identities for hypergeoemtric series, such as the (Gauss) hypergeometric series, the generalized hypergeometric series and the Appell-Lauricella hypergeometric series. Furthermore, using this method, the author gets identities for the hypergeometric series and shows that values of at some points can be expressed in terms of gamma functions, together with certain elementary functions. The author tabulates the values of that can be obtained with this method and finds that this set includes almost all previously known values and many previously unknown values.


The Confluent Hypergeometric Function

The Confluent Hypergeometric Function

Author: Herbert Buchholz

Publisher: Springer Science & Business Media

Published: 2013-11-22

Total Pages: 255

ISBN-13: 3642883966

DOWNLOAD EBOOK

The subject of this book is the higher transcendental function known as the confluent hypergeometric function. In the last two decades this function has taken on an ever increasing significance because of its use in the application of mathematics to physical and technical problems. There is no doubt that this trend will continue until the general theory of confluent hypergeometric functions becomes familiar to the majority of physicists in much the same way as the cylinder functions, which were previously less well known, are now used in many engineering and physical problems. This book is intended to further this development. The important practical significance of the functions which are treated hardly demands an involved discussion since they include, as special cases, a number of simpler special functions which have long been the everyday tool of the physicist. It is sufficient to mention that these include, among others, the logarithmic integral, the integral sine and cosine, the error integral, the Fresnel integral, the cylinder functions and the cylinder function in parabolic cylindrical coordinates. For anyone who puts forth the effort to study the confluent hypergeometric function in more detail there is the inestimable advantage of being able to understand the properties of other functions derivable from it. This gen eral point of view is particularly useful in connection with series ex pansions valid for values of the argument near zero or infinity and in connection with the various integral representations.


An Atlas of Functions

An Atlas of Functions

Author: Keith B. Oldham

Publisher: Springer Science & Business Media

Published: 2010-07-15

Total Pages: 737

ISBN-13: 0387488073

DOWNLOAD EBOOK

This book comprehensively covers several hundred functions or function families. In chapters that progress by degree of complexity, it starts with simple, integer-valued functions then moves on to polynomials, Bessel, hypergeometric and hundreds more.


Handbook of Mathematical Functions

Handbook of Mathematical Functions

Author: Milton Abramowitz

Publisher: Courier Corporation

Published: 1965-01-01

Total Pages: 1068

ISBN-13: 9780486612720

DOWNLOAD EBOOK

An extensive summary of mathematical functions that occur in physical and engineering problems


Generalized Hypergeometric Functions

Generalized Hypergeometric Functions

Author: K. Srinivasa Rao

Publisher:

Published: 2018

Total Pages: 0

ISBN-13: 9780750314961

DOWNLOAD EBOOK

"In 1813, Gauss first outlined his studies of the hypergeometric series which has been of great significance in the mathematical modelling of physical phenomena. This detailed monograph outlines the fundamental relationships between the hypergeometric function and special functions. In nine comprehensive chapters, Dr. Rao and Dr. Lakshminarayanan present a unified approach to the study of special functions of mathematics using Group theory. The book offers fresh insight into various aspects of special functions and their relationship, utilizing transformations and group theory and their applications. It will lay the foundation for deeper understanding by both experienced researchers and novice students." -- Prové de l'editor.


An Introduction to Special Functions

An Introduction to Special Functions

Author: Carlo Viola

Publisher: Springer

Published: 2016-10-31

Total Pages: 172

ISBN-13: 3319413457

DOWNLOAD EBOOK

The subjects treated in this book have been especially chosen to represent a bridge connecting the content of a first course on the elementary theory of analytic functions with a rigorous treatment of some of the most important special functions: the Euler gamma function, the Gauss hypergeometric function, and the Kummer confluent hypergeometric function. Such special functions are indispensable tools in "higher calculus" and are frequently encountered in almost all branches of pure and applied mathematics. The only knowledge assumed on the part of the reader is an understanding of basic concepts to the level of an elementary course covering the residue theorem, Cauchy's integral formula, the Taylor and Laurent series expansions, poles and essential singularities, branch points, etc. The book addresses the needs of advanced undergraduate and graduate students in mathematics or physics.


Special Functions

Special Functions

Author: George E. Andrews

Publisher: Cambridge University Press

Published: 1999

Total Pages: 684

ISBN-13: 9780521789882

DOWNLOAD EBOOK

An overview of special functions, focusing on the hypergeometric functions and the associated hypergeometric series.


Zeta and Q-Zeta Functions and Associated Series and Integrals

Zeta and Q-Zeta Functions and Associated Series and Integrals

Author: H. M. Srivastava

Publisher: Elsevier

Published: 2011-10-25

Total Pages: 675

ISBN-13: 0123852188

DOWNLOAD EBOOK

Zeta and q-Zeta Functions and Associated Series and Integrals is a thoroughly revised, enlarged and updated version of Series Associated with the Zeta and Related Functions. Many of the chapters and sections of the book have been significantly modified or rewritten, and a new chapter on the theory and applications of the basic (or q-) extensions of various special functions is included. This book will be invaluable because it covers not only detailed and systematic presentations of the theory and applications of the various methods and techniques used in dealing with many different classes of series and integrals associated with the Zeta and related functions, but stimulating historical accounts of a large number of problems and well-classified tables of series and integrals. Detailed and systematic presentations of the theory and applications of the various methods and techniques used in dealing with many different classes of series and integrals associated with the Zeta and related functions


Computer Algebra in Quantum Field Theory

Computer Algebra in Quantum Field Theory

Author: Carsten Schneider

Publisher: Springer Science & Business Media

Published: 2013-10-05

Total Pages: 422

ISBN-13: 3709116163

DOWNLOAD EBOOK

The book focuses on advanced computer algebra methods and special functions that have striking applications in the context of quantum field theory. It presents the state of the art and new methods for (infinite) multiple sums, multiple integrals, in particular Feynman integrals, difference and differential equations in the format of survey articles. The presented techniques emerge from interdisciplinary fields: mathematics, computer science and theoretical physics; the articles are written by mathematicians and physicists with the goal that both groups can learn from the other field, including most recent developments. Besides that, the collection of articles also serves as an up-to-date handbook of available algorithms/software that are commonly used or might be useful in the fields of mathematics, physics or other sciences.