Recent Advances in Robot Learning

Recent Advances in Robot Learning

Author: Judy A. Franklin

Publisher: Springer Science & Business Media

Published: 1996-06-30

Total Pages: 226

ISBN-13: 9780792397458

DOWNLOAD EBOOK

Recent Advances in Robot Learning contains seven papers on robot learning written by leading researchers in the field. As the selection of papers illustrates, the field of robot learning is both active and diverse. A variety of machine learning methods, ranging from inductive logic programming to reinforcement learning, is being applied to many subproblems in robot perception and control, often with objectives as diverse as parameter calibration and concept formulation. While no unified robot learning framework has yet emerged to cover the variety of problems and approaches described in these papers and other publications, a clear set of shared issues underlies many robot learning problems. Machine learning, when applied to robotics, is situated: it is embedded into a real-world system that tightly integrates perception, decision making and execution. Since robot learning involves decision making, there is an inherent active learning issue. Robotic domains are usually complex, yet the expense of using actual robotic hardware often prohibits the collection of large amounts of training data. Most robotic systems are real-time systems. Decisions must be made within critical or practical time constraints. These characteristics present challenges and constraints to the learning system. Since these characteristics are shared by other important real-world application domains, robotics is a highly attractive area for research on machine learning. On the other hand, machine learning is also highly attractive to robotics. There is a great variety of open problems in robotics that defy a static, hand-coded solution. Recent Advances in Robot Learning is an edited volume of peer-reviewed original research comprising seven invited contributions by leading researchers. This research work has also been published as a special issue of Machine Learning (Volume 23, Numbers 2 and 3).


Robot Learning from Human Demonstration

Robot Learning from Human Demonstration

Author: Sonia Dechter

Publisher: Springer Nature

Published: 2022-06-01

Total Pages: 109

ISBN-13: 3031015703

DOWNLOAD EBOOK

Learning from Demonstration (LfD) explores techniques for learning a task policy from examples provided by a human teacher. The field of LfD has grown into an extensive body of literature over the past 30 years, with a wide variety of approaches for encoding human demonstrations and modeling skills and tasks. Additionally, we have recently seen a focus on gathering data from non-expert human teachers (i.e., domain experts but not robotics experts). In this book, we provide an introduction to the field with a focus on the unique technical challenges associated with designing robots that learn from naive human teachers. We begin, in the introduction, with a unification of the various terminology seen in the literature as well as an outline of the design choices one has in designing an LfD system. Chapter 2 gives a brief survey of the psychology literature that provides insights from human social learning that are relevant to designing robotic social learners. Chapter 3 walks through an LfD interaction, surveying the design choices one makes and state of the art approaches in prior work. First, is the choice of input, how the human teacher interacts with the robot to provide demonstrations. Next, is the choice of modeling technique. Currently, there is a dichotomy in the field between approaches that model low-level motor skills and those that model high-level tasks composed of primitive actions. We devote a chapter to each of these. Chapter 7 is devoted to interactive and active learning approaches that allow the robot to refine an existing task model. And finally, Chapter 8 provides best practices for evaluation of LfD systems, with a focus on how to approach experiments with human subjects in this domain.


Toward Learning Robots

Toward Learning Robots

Author: Walter Van de Velde

Publisher: MIT Press

Published: 1993

Total Pages: 182

ISBN-13: 9780262720175

DOWNLOAD EBOOK

The contributions in Toward Learning Robots address the question of how a robot can be designed to acquire autonomously whatever it needs to realize adequate behavior in a complex environment. In-depth discussions of issues, techniques, and experiments in machine learning focus on improving ease of programming and enhancing robustness in unpredictable and changing environments, given limitations of time and resources available to researchers. The authors show practical progress toward a useful set of abstractions and techniques to describe and automate various aspects of learning in autonomous systems. The close interaction of such a system with the world reveals opportunities for new architectures and learning scenarios and for grounding symbolic representations, though such thorny problems as noise, choice of language, abstraction level of representation, and operationality have to be faced head-on. Contents Introduction: Toward Learning Robots * Learning Reliable Manipulation Strategies without Initial Physical Models * Learning by an Autonomous Agent in the Pushing Domain * A Cost-Sensitive Machine Learning Method for the Approach and Recognize Task * A Robot Exploration and Mapping Strategy Based on a Semantic Hierarchy of Spatial Representations * Understanding Object Motion: Recognition, Learning and Spatiotemporal Reasoning * Learning How to Plan * Robo-Soar: An Integration of External Interaction, Planning, and Learning Using Soar * Foundations of Learning in Autonomous Agents * Prior Knowledge and Autonomous Learning


Robot Learning

Robot Learning

Author: J. H. Connell

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 247

ISBN-13: 1461531845

DOWNLOAD EBOOK

Building a robot that learns to perform a task has been acknowledged as one of the major challenges facing artificial intelligence. Self-improving robots would relieve humans from much of the drudgery of programming and would potentially allow operation in environments that were changeable or only partially known. Progress towards this goal would also make fundamental contributions to artificial intelligence by furthering our understanding of how to successfully integrate disparate abilities such as perception, planning, learning and action. Although its roots can be traced back to the late fifties, the area of robot learning has lately seen a resurgence of interest. The flurry of interest in robot learning has partly been fueled by exciting new work in the areas of reinforcement earning, behavior-based architectures, genetic algorithms, neural networks and the study of artificial life. Robot Learning gives an overview of some of the current research projects in robot learning being carried out at leading universities and research laboratories in the United States. The main research directions in robot learning covered in this book include: reinforcement learning, behavior-based architectures, neural networks, map learning, action models, navigation and guided exploration.


Interdisciplinary Approaches To Robot Learning

Interdisciplinary Approaches To Robot Learning

Author: Andreas Birk

Publisher: World Scientific

Published: 2000-06-12

Total Pages: 220

ISBN-13: 9814492973

DOWNLOAD EBOOK

Robots are being used in increasingly complicated and demanding tasks, often in environments that are complex or even hostile. Underwater, space and volcano exploration are just some of the activities that robots are taking part in, mainly because the environments that are being explored are dangerous for humans. Robots can also inhabit dynamic environments, for example to operate among humans, not just in factories, but also taking on more active roles. Recently, for instance, they have made their way into the home entertainment market. Given the variety of situations that robots will be placed in, learning becomes increasingly important.Robot learning is essentially about equipping robots with the capacity to improve their behaviour over time, based on their incoming experiences. The papers in this volume present a variety of techniques. Each paper provides a mini-introduction to a subfield of robot learning. Some also give a fine introduction to the field of robot learning as a whole. There is one unifying aspect to the work reported in the book, namely its interdisciplinary nature, especially in the combination of robotics, computer science and biology. This approach has two important benefits: first, the study of learning in biological systems can provide robot learning scientists and engineers with valuable insights into learning mechanisms of proven functionality and versatility; second, computational models of learning in biological systems, and their implementation in simulated agents and robots, can provide researchers of biological systems with a powerful platform for the development and testing of learning theories.


Human-robot Interaction

Human-robot Interaction

Author: Sara Kiesler

Publisher: CRC Press

Published: 2004-06-17

Total Pages: 184

ISBN-13: 1482269562

DOWNLOAD EBOOK

This special issue is made up of five articles which cover the emerging area of human-robot interaction. The first paper offers a theoretical ecological framework for the design of personal service robots in homes of elderly people. Next, a field study of two robots that visited a children's elementary school in Japan for two weeks, with the purpos


Making Robots Smarter

Making Robots Smarter

Author: Katharina Morik

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 279

ISBN-13: 1461552397

DOWNLOAD EBOOK

Making Robots Smarter is a book about learning robots. It treats this topic based on the idea that the integration of sensing and action is the central issue. In the first part of the book, aspects of learning in execution and control are discussed. Methods for the automatic synthesis of controllers, for active sensing, for learning to enhance assembly, and for learning sensor-based navigation are presented. Since robots are not isolated but should serve us, the second part of the book discusses learning for human-robot interaction. Methods of learning understandable concepts for assembly, monitoring, and navigation are described as well as optimizing the implementation of such understandable concepts for a robot's real-time performance. In terms of the study of embodied intelligence, Making Robots Smarter asks how skills are acquired and where capabilities of execution and control come from. Can they be learned from examples or experience? What is the role of communication in the learning procedure? Whether we name it one way or the other, the methodological challenge is that of integrating learning capabilities into robots.