Quantitative methods in finance form a wide research field which addresses many different problems and practical applications. The papers of this special issue, however, all contribute to one of the core application areas in finance: investment decisions. In doing so, they apply a variety of methodological approaches and address different aspects of the overall investment decision. But they share both a very practical perspective and the direct empirical verification of the given proposals.
Financial Risk Forecasting is a complete introduction to practical quantitative risk management, with a focus on market risk. Derived from the authors teaching notes and years spent training practitioners in risk management techniques, it brings together the three key disciplines of finance, statistics and modeling (programming), to provide a thorough grounding in risk management techniques. Written by renowned risk expert Jon Danielsson, the book begins with an introduction to financial markets and market prices, volatility clusters, fat tails and nonlinear dependence. It then goes on to present volatility forecasting with both univatiate and multivatiate methods, discussing the various methods used by industry, with a special focus on the GARCH family of models. The evaluation of the quality of forecasts is discussed in detail. Next, the main concepts in risk and models to forecast risk are discussed, especially volatility, value-at-risk and expected shortfall. The focus is both on risk in basic assets such as stocks and foreign exchange, but also calculations of risk in bonds and options, with analytical methods such as delta-normal VaR and duration-normal VaR and Monte Carlo simulation. The book then moves on to the evaluation of risk models with methods like backtesting, followed by a discussion on stress testing. The book concludes by focussing on the forecasting of risk in very large and uncommon events with extreme value theory and considering the underlying assumptions behind almost every risk model in practical use – that risk is exogenous – and what happens when those assumptions are violated. Every method presented brings together theoretical discussion and derivation of key equations and a discussion of issues in practical implementation. Each method is implemented in both MATLAB and R, two of the most commonly used mathematical programming languages for risk forecasting with which the reader can implement the models illustrated in the book. The book includes four appendices. The first introduces basic concepts in statistics and financial time series referred to throughout the book. The second and third introduce R and MATLAB, providing a discussion of the basic implementation of the software packages. And the final looks at the concept of maximum likelihood, especially issues in implementation and testing. The book is accompanied by a website - www.financialriskforecasting.com – which features downloadable code as used in the book.
This book is a collection of papers for the Special Issue “Quantitative Methods for Economics and Finance” of the journal Mathematics. This Special Issue reflects on the latest developments in different fields of economics and finance where mathematics plays a significant role. The book gathers 19 papers on topics such as volatility clusters and volatility dynamic, forecasting, stocks, indexes, cryptocurrencies and commodities, trade agreements, the relationship between volume and price, trading strategies, efficiency, regression, utility models, fraud prediction, or intertemporal choice.
Quantitative finance is a combination of economics, accounting, statistics, econometrics, mathematics, stochastic process, and computer science and technology. Increasingly, the tools of financial analysis are being applied to assess, monitor, and mitigate risk, especially in the context of globalization, market volatility, and economic crisis. This two-volume handbook, comprised of over 100 chapters, is the most comprehensive resource in the field to date, integrating the most current theory, methodology, policy, and practical applications. Showcasing contributions from an international array of experts, the Handbook of Quantitative Finance and Risk Management is unparalleled in the breadth and depth of its coverage. Volume 1 presents an overview of quantitative finance and risk management research, covering the essential theories, policies, and empirical methodologies used in the field. Chapters provide in-depth discussion of portfolio theory and investment analysis. Volume 2 covers options and option pricing theory and risk management. Volume 3 presents a wide variety of models and analytical tools. Throughout, the handbook offers illustrative case examples, worked equations, and extensive references; additional features include chapter abstracts, keywords, and author and subject indices. From "arbitrage" to "yield spreads," the Handbook of Quantitative Finance and Risk Management will serve as an essential resource for academics, educators, students, policymakers, and practitioners.
Quantitative methods have revolutionized the area of trading, regulation, risk management, portfolio construction, asset pricing and treasury activities, and governmental activity such as central banking to name but some of the applications. Downside-risk, as a quantitative method, is an accurate measurement of investment risk, because it captures the risk of not accomplishing the investor's goal. 'Downside Risk in Financial Markets' demonstrates how downside-risk can produce better results in performance measurement and asset allocation than variance modelling. Theory, as well as the practical issues involved in its implementation, is covered and the arguments put forward emphatically show the superiority of downside risk models to variance models in terms of risk measurement and decision making. Variance considers all uncertainty to be risky. Downside-risk only considers returns below that needed to accomplish the investor's goal, to be risky. Risk is one of the biggest issues facing the financial markets today. 'Downside Risk in Financial Markets' outlines the major issues for Investment Managers and focuses on "downside-risk" as a key activity in managing risk in investment/portfolio management. Managing risk is now THE paramount topic within the financial sector and recurring losses through the 1990s has shocked financial institutions into placing much greater emphasis on risk management and control. Free Software Enclosed To help you implement the knowledge you will gain from reading this book, a CD is enclosed that contains free software programs that were previously only available to institutional investors under special licensing agreement to The pension Research Institute. This is our contribution to the advancement of professionalism in portfolio management. The Forsey-Sortino model is an executable program that: 1. Runs on any PC without the need of any additional software. 2. Uses the bootstrap procedure developed by Dr. Bradley Effron at Stanford University to uncover what could have happened, instead of relying only on what did happen in the past. This is the best procedure we know of for describing the nature of uncertainty in financial markets. 3. Fits a three parameter lognormal distribution to the bootstrapped data to allow downside risk to be calculated from a continuous distribution. This improves the efficacy of the downside risk estimates. 4. Calculates upside potential and downside risk from monthly returns on any portfolio manager. 5. Calculates upside potential and downside risk from any user defined distribution. Forsey-Sortino Source Code: 1. The source code, written in Visual Basic 5.0, is provided for institutional investors who want to add these calculations to their existing financial services. 2. No royalties are required for this source code, providing institutions inform clients of the source of these calculations. A growing number of services are now calculating downside risk in a manner that we are not comfortable with. Therefore, we want investors to know when downside risk and upside potential are calculated in accordance with the methodology described in this book. Riddles Spreadsheet: 1. Neil Riddles, former Senior Vice President and Director of Performance Analysis at Templeton Global Advisors, now COO at Hansberger Global Advisors Inc., offers a free spreadsheet in excel format. 2. The spreadsheet calculates downside risk and upside potential relative to the returns on an index Brings together a range of relevant material, not currently available in a single volume source. Provides practical information on how financial organisations can use downside risk techniques and technological developments to effectively manage risk in their portfolio management. Provides a rigorous theoretical underpinning for the use of downside risk techniques. This is important for the long-run acceptance of the methodology, since such arguments justify consultant's recommendations to pension funds and other plan sponsors.
This book deals with the widespread economic and financial crime issues of corruption, the shadow economy and money laundering. It investigates both the theoretical and practical aspects of these crimes, identifying their effects on economic, social and political life. This book presents these causes and effects with a state of the art review and with recent empirical research. It compares the international and transnational aspects of these economic and financial crimes through discussion and critical analysis. This volume will be of interest to researchers and policy makers working to study and prevent economic and financial crime, white collar crime, and organized crime.
This book puts numerical methods in action for the purpose of solving practical problems in quantitative finance. The first part develops a toolkit in numerical methods for finance. The second part proposes twenty self-contained cases covering model simulation, asset pricing and hedging, risk management, statistical estimation and model calibration. Each case develops a detailed solution to a concrete problem arising in applied financial management and guides the user towards a computer implementation. The appendices contain "crash courses" in VBA and Matlab programming languages.
The purpose of the Special Issue “Quantitative Methods in Economics and Finance” of the journal Risks was to provide a collection of papers that reflect the latest research and problems of pricing complex derivates, simulation pricing, analysis of financial markets, and volatility of exchange rates in the international context. This book can be used as a reference for academicians and researchers who would like to discuss and introduce new developments in the field of quantitative methods in economics and finance and explore applications of quantitative methods in other business areas.
At present, computational methods have received considerable attention in economics and finance as an alternative to conventional analytical and numerical paradigms. This Special Issue brings together both theoretical and application-oriented contributions, with a focus on the use of computational techniques in finance and economics. Examined topics span on issues at the center of the literature debate, with an eye not only on technical and theoretical aspects but also very practical cases.