Extreme weather and climate events, interacting with exposed and vulnerable human and natural systems, can lead to disasters. This Special Report explores the social as well as physical dimensions of weather- and climate-related disasters, considering opportunities for managing risks at local to international scales. SREX was approved and accepted by the Intergovernmental Panel on Climate Change (IPCC) on 18 November 2011 in Kampala, Uganda.
As climate has warmed over recent years, a new pattern of more frequent and more intense weather events has unfolded across the globe. Climate models simulate such changes in extreme events, and some of the reasons for the changes are well understood. Warming increases the likelihood of extremely hot days and nights, favors increased atmospheric moisture that may result in more frequent heavy rainfall and snowfall, and leads to evaporation that can exacerbate droughts. Even with evidence of these broad trends, scientists cautioned in the past that individual weather events couldn't be attributed to climate change. Now, with advances in understanding the climate science behind extreme events and the science of extreme event attribution, such blanket statements may not be accurate. The relatively young science of extreme event attribution seeks to tease out the influence of human-cause climate change from other factors, such as natural sources of variability like El Niño, as contributors to individual extreme events. Event attribution can answer questions about how much climate change influenced the probability or intensity of a specific type of weather event. As event attribution capabilities improve, they could help inform choices about assessing and managing risk, and in guiding climate adaptation strategies. This report examines the current state of science of extreme weather attribution, and identifies ways to move the science forward to improve attribution capabilities.
This long-anticipated reference and sourcebook for CaliforniaÕs remarkable ecological abundance provides an integrated assessment of each major ecosystem typeÑits distribution, structure, function, and management. A comprehensive synthesis of our knowledge about this biologically diverse state, Ecosystems of California covers the state from oceans to mountaintops using multiple lenses: past and present, flora and fauna, aquatic and terrestrial, natural and managed. Each chapter evaluates natural processes for a specific ecosystem, describes drivers of change, and discusses how that ecosystem may be altered in the future. This book also explores the drivers of CaliforniaÕs ecological patterns and the history of the stateÕs various ecosystems, outlining how the challenges of climate change and invasive species and opportunities for regulation and stewardship could potentially affect the stateÕs ecosystems. The text explicitly incorporates both human impacts and conservation and restoration efforts and shows how ecosystems support human well-being. Edited by two esteemed ecosystem ecologists and with overviews by leading experts on each ecosystem, this definitive work will be indispensable for natural resource management and conservation professionals as well as for undergraduate or graduate students of CaliforniaÕs environment and curious naturalists.
The Intergovernmental Panel on Climate Change (IPCC) is the leading international body for assessing the science related to climate change. It provides policymakers with regular assessments of the scientific basis of human-induced climate change, its impacts and future risks, and options for adaptation and mitigation. This IPCC Special Report on the Ocean and Cryosphere in a Changing Climate is the most comprehensive and up-to-date assessment of the observed and projected changes to the ocean and cryosphere and their associated impacts and risks, with a focus on resilience, risk management response options, and adaptation measures, considering both their potential and limitations. It brings together knowledge on physical and biogeochemical changes, the interplay with ecosystem changes, and the implications for human communities. It serves policymakers, decision makers, stakeholders, and all interested parties with unbiased, up-to-date, policy-relevant information. This title is also available as Open Access on Cambridge Core.
This book provides an integrated assessment of issues related to climate variability and change, predictability and risks. It details both the technical aspects of variability and abrupt climate change and the agricultural and economical impacts and consequences.
Climate change is thought to be especially relevant to ecosystems in the cold biomes. Observed warming has been higher in cold climates through various positive feedbacks, especially declining snow and ice cover, and climate projections indicate further rapid warming in the decades to come. Temperature change can have profound impacts in cold biome ecosystems, either directly in terms of impacts on physiology or growing season length, or indirectly via changes in nutrient cycling. The regions focused on here are the (sub)arctic and the (sub)alpine areas, both characterized by short growing seasons and low annual temperatures, but with different radiation environments depending on latitude. Climate change can have impacts in all seasons. Increased spring temperatures can accelerate snowmelt, leading to an earlier onset of the growing season, while warmer summers may stimulate primary productivity through temperatures closer to metabolic optima and/or increased mineralization rates. Winter warming can lead to the vegetation being damaged because of exposure to harsh frost without insulating snow cover. In all of this, concurrent changes in precipitation also play an important role: increased snowfall can buffer warming-induced advances in snowmelt, a higher ratio of rain to snow can greatly accelerate snowmelt in winter and spring, and summer drought may reverse growth-stimulation by warming directly (drought stress) or indirectly (e.g. impaired nutrient uptake). Micro-climate is crucial in these systems and requires particular attention as it can vary widely across the landscape, creating different growing environments in the space of a few meters or even less. Interest in cold region responses to climate change does not only arise from the fact that they harbor unique ecosystems that may be endangered, but also because they store large amounts of carbon that may be released under climate change. However, research is challenging because of the remoteness of many of these areas and the harsh conditions during much of the year. In spite of this, some studies have been carried out over an extensive period, spanning decades and yielding information on for example plant community reorganization (including invasions), and changes in phenology above- and/or belowground. Other studies focus on shorter term effects, such as impacts of heat waves, late frosts or other anomalous weather, including longer term (after-) effects that may differ drastically from other regions because of the short growing season in cold climates. Ultimately, models are used to predict future changes in vegetation along latitudinal or elevational gradients, although phenology and microclimatic variation may pose particular challenges. Contributions to this Research Topic focus on climate change, encompassing both changes in the mean (gradual warming) and variability (heat waves, altered precipitation distribution) in cold biomes. The Topic contains reports on observed changes or events, but also research making use of experimentally imposed environmental changes. The focus is varied, including phenology, physiology, soil and vegetation science and biogeochemistry, with the aim of providing a comprehensive overview of observed and expected responses to climate change in cold biome ecosystems.
With a long history and deep connection to the Earth’s resources, indigenous peoples have an intimate understanding and ability to observe the impacts linked to climate change. Traditional ecological knowledge and tribal experience play a key role in developing future scientific solutions for adaptation to the impacts. The book explores climate-related issues for indigenous communities in the United States, including loss of traditional knowledge, forests and ecosystems, food security and traditional foods, as well as water, Arctic sea ice loss, permafrost thaw and relocation. The book also highlights how tribal communities and programs are responding to the changing environments. Fifty authors from tribal communities, academia, government agencies and NGOs contributed to the book. Previously published in Climatic Change, Volume 120, Issue 3, 2013.