The emerging technology of multisensor data fusion has a wide range of applications, both in Department of Defense (DoD) areas and in the civilian arena. The techniques of multisensor data fusion draw from an equally broad range of disciplines, including artificial intelligence, pattern recognition, and statistical estimation. With the rapid evolut
In the years since the bestselling first edition, fusion research and applications have adapted to service-oriented architectures and pushed the boundaries of situational modeling in human behavior, expanding into fields such as chemical and biological sensing, crisis management, and intelligent buildings. Handbook of Multisensor Data Fusion: Theory and Practice, Second Edition represents the most current concepts and theory as information fusion expands into the realm of network-centric architectures. It reflects new developments in distributed and detection fusion, situation and impact awareness in complex applications, and human cognitive concepts. With contributions from the world’s leading fusion experts, this second edition expands to 31 chapters covering the fundamental theory and cutting-edge developments that are driving this field. New to the Second Edition— · Applications in electromagnetic systems and chemical and biological sensors · Army command and combat identification techniques · Techniques for automated reasoning · Advances in Kalman filtering · Fusion in a network centric environment · Service-oriented architecture concepts · Intelligent agents for improved decision making · Commercial off-the-shelf (COTS) software tools From basic information to state-of-the-art theories, this second edition continues to be a unique, comprehensive, and up-to-date resource for data fusion systems designers.
The fusion of information from sensors with different physical characteristics, such as sight, touch, sound, etc., enhances the understanding of our surroundings and provides the basis for planning, decision-making, and control of autonomous and intelligent machines. The minimal representation approach to multisensor fusion is based on the use of an information measure as a universal yardstick for fusion. Using models of sensor uncertainty, the representation size guides the integration of widely varying types of data and maximizes the information contributed to a consistent interpretation. In this book, the general theory of minimal representation multisensor fusion is developed and applied in a series of experimental studies of sensor-based robot manipulation. A novel application of differential evolutionary computation is introduced to achieve practical and effective solutions to this difficult computational problem.
This volume contains revised papers based on contributions to the NATO Advanced Research Workshop on Multisensor Fusion for Computer Vision, held in Grenoble, France, in June 1989. The 24 papers presented here cover a broad range of topics, including the principles and issues in multisensor fusion, information fusion for navigation, multisensor fusion for object recognition, network approaches to multisensor fusion, computer architectures for multi sensor fusion, and applications of multisensor fusion. The participants met in the beautiful surroundings of Mont Belledonne in Grenoble to discuss their current work in a setting conducive to interaction and the exchange of ideas. Each participant is a recognized leader in his or her area in the academic, governmental, or industrial research community. The workshop focused on techniques for the fusion or integration of sensor information to achieve the optimum interpretation of a scene. Several participants presented novel points of view on the integration of information. The 24 papers presented in this volume are based on those collected by the editor after the workshop, and reflect various aspects of our discussions. The papers are organized into five parts, as follows.
Since the publication of the first edition of this book, advances in algorithms, logic and software tools have transformed the field of data fusion. The latest edition covers these areas as well as smart agents, human computer interaction, cognitive aides to analysis and data system fusion control. data fusion system, this book guides you through the process of determining the trade-offs among competing data fusion algorithms, selecting commercial off-the-shelf (COTS) tools, and understanding when data fusion improves systems processing. Completely new chapters in this second edition explain data fusion system control, DARPA's recently developed TRIP model, and the latest applications of data fusion in data warehousing and medical equipment, as well as defence systems.
Data fusion is a rapidly developing technology which involves the combination of information supplied by several NDT (Non-Destructive Testing) sensors to provide a more complete and understandable picture of structural integrity. This text is the first to be devoted exclusively to the concept of multisensor integration and data fusion applied to NDT. The advantages of this methodology are widely acknowledged and the author presents an excellent introduction to data fusion processes. Problems are approached progressively through detailed case studies, offering practical guidance for those wishing to develop and explore NDT data fusion further. This book will prove invaluable to inspectors, students and researchers concerned with NDT signal processing measurements and testing. It shows the great value and major benefits which can be achieved by implementing multisensor data fusion, not only in NDT but also in any discipline where measurements and testing are key activities.
This book addresses the techniques for modeling and integration of data provided by different sensors within robotics and knowledge sources within machine intelligence. Leaders in robotics and machine intelligence capture state-of-the-art technology in data sensor fusion and give a unified vision of the future of the field, presented from both the theoretical and practical angles.
There has been a growing interest during the 1990s in the use of multiple sensors to increase the capabilities of intelligent machines and systems. This text is a compendium of some of the most important and influential work that has appeared in this area. In addition, it contains comprehensive introductory material and an extensive survey and review of related research. The volume should be useful to everyone interested in the development of more intelligent machines and systems through the synergistic use of multiple sensors.
From traditional topics that form the core of industrial electronics, to new and emerging concepts and technologies, The Industrial Electronics Handbook, in a single volume, has the field covered. Nowhere else will you find so much information on so many major topics in the field. For facts you need every day, and for discussions on topics you have only dreamed of, The Industrial Electronics Handbook is an ideal reference.
Robotics applications, initially developed for industrial and manufacturing contexts, are now strongly present in several elds. Besides well-known space and high-technology applications, robotics for every day life and medical s- vices is becoming more and more popular. As an example, robotic manipu- tors are particularly useful in surgery and radiation treatments, they could be employed for civil demining, for helping disabled people, and ultimately for domestic tasks, entertainment and education. Such a kind of robotic app- cations require the integration of many di erent skills. Autonomous vehicles and mobile robots in general must be integrated with articulated manipu- tors. Many robotic technologies (sensors, actuators and computing systems) must be properly used with speci c technologies (localisation, planning and control technologies). The task of designing robots for these applications is a hard challenge: a speci c competence in each area is demanded, in the e ort of a truly integrated multidisciplinary design.