An exploration of the geography by which measles has repeatedly passed through a series of communities in Iceland during the 20th century. Demonstrates the general principles which underlie person-to-person spatial diffusion processes.
In this concise, clear introduction, the authors describe the theory of spatial diffusion, its method of measurement and many of its applications. The seminal work of Torsten Hagerstrand, who introduced the original spatial model of diffusion, is outlined. The authors then summarise the developments that have been made to Hagerstrand's formulation, and make suggestions for future research.
This title provides a broad overview of the different types of models used in advanced spatial analysis. The models concern spatial organization, location factors and spatial interaction patterns from both static and dynamic perspectives. Each chapter gives a broad overview of the subject, covering both theoretical developments and practical applications. The advantages of an interdisciplinary approach are illustrated in the way that the viewpoint of each of the individual disciplines are brought together when considering questions relevant to spatial analysis. The authors of the chapters come from a range of different disciplines (geography, economy, hydrology, ecology, etc.) and are specialists in their field. They use a range of methods and modeling tools developed in mathematics, statistics, artificial intelligence and physics.
In this concise, clear introduction, the authors describe the theory of spatial diffusion, its method of measurement and many of its applications. The seminal work of Torsten Hagerstrand, who introduced the original spatial model of diffusion, is outlined. The authors then summarise the developments that have been made to Hagerstrand's formulation, and make suggestions for future research.
Observations and physical concepts are interwoven to give basic explanations of phenomena and also show the limitations in these explanations and identify some fundamental questions. Compared to conventional plasma physics textbooks this book focuses on the concepts relevant in the large-scale space plasmas. It combines basic concepts with current research and new observations in interplanetary space and in the magnetospheres. Graduate students and young researchers starting to work in this special field of science, will find the numerous references to review articles as well as important original papers helpful to orientate themselves in the literature. Emphasis is on energetic particles and their interaction with the plasma as examples for non-thermal phenomena, shocks and their role in particle acceleration as examples for non-linear phenomena. This second edition has been updated and extended. Improvements include: the use of SI units; addition of recent results from SOHO and Ulysses; improved treatment of the magnetosphere as a dynamic phenomenon; text restructured to provide a closer coupling between basic physical concepts and observed complex phenomena.
Spatial Modeling in GIS and R for Earth and Environmental Sciences offers an integrated approach to spatial modelling using both GIS and R. Given the importance of Geographical Information Systems and geostatistics across a variety of applications in Earth and Environmental Science, a clear link between GIS and open source software is essential for the study of spatial objects or phenomena that occur in the real world and facilitate problem-solving. Organized into clear sections on applications and using case studies, the book helps researchers to more quickly understand GIS data and formulate more complex conclusions. The book is the first reference to provide methods and applications for combining the use of R and GIS in modeling spatial processes. It is an essential tool for students and researchers in earth and environmental science, especially those looking to better utilize GIS and spatial modeling. - Offers a clear, interdisciplinary guide to serve researchers in a variety of fields, including hazards, land surveying, remote sensing, cartography, geophysics, geology, natural resources, environment and geography - Provides an overview, methods and case studies for each application - Expresses concepts and methods at an appropriate level for both students and new users to learn by example
In addition to presenting the latest work in the field, Artificial Life V includes a retrospective and prospective look at both artificial and natural life with the aim of refining the methods and approaches discovered so far into viable, practical tools for the pursuit of science and engineering goals. May 16-18, 1996 · Nara, Japan Despite all the successes in computer engineering, adaptive computation, bottom-up AI, and robotics, Artificial Life must not become simply a one-way bridge, borrowing biological principles to enhance our engineering efforts in the construction of life-as-it-could-be. We must ensure that we give back to biology in kind, by developing tools and methods that will be of real value in the effort to understand life-as-it-is. Artificial Life V marks a decade since Christopher Langton organized the first workshop on artificial life--a decade characterized by the exploration of new possibilities and techniques as researchers have sought to understand, through synthetic experiments, the organizing principles underlying the dynamics (usually the nonlinear dynamics) of living systems. In addition to presenting the latest work in the field, Artificial Life V includes a retrospective and prospective look at both artificial and natural life with the aim of refining the methods and approaches discovered so far into viable, practical tools for the pursuit of science and engineering goals. Complex Adaptive Systems series