Spatial and Material Forces in Nonlinear Continuum Mechanics

Spatial and Material Forces in Nonlinear Continuum Mechanics

Author: Paul Steinmann

Publisher: Springer Nature

Published: 2022-03-28

Total Pages: 418

ISBN-13: 3030890708

DOWNLOAD EBOOK

This monograph details spatial and material vistas on non-linear continuum mechanics in a dissipation-consistent approach. Thereby, the spatial vista renders the common approach to nonlinear continuum mechanics and corresponding spatial forces, whereas the material vista elaborates on configurational mechanics and corresponding material or rather configurational forces. Fundamental to configurational mechanics is the concept of force. In analytical mechanics, force is a derived object that is power conjugate to changes of generalised coordinates. For a continuum body, these are typically the spatial positions of its continuum points. However, if in agreement with the second law, continuum points, e.g. on the boundary, may also change their material positions. Configurational forces are then power conjugate to these configurational changes. A paradigm is a crack tip, i.e. a singular part of the boundary changing its position during crack propagation, with the related configurational force, typically the J-integral, driving its evolution, thereby consuming power, typically expressed as the energy release rate. Taken together, configurational mechanics is an unconventional branch of continuum physics rationalising and unifying the tendency of a continuum body to change its material configuration. It is thus the ideal formulation to tackle sophisticated problems in continuum defect mechanics. Configurational mechanics is entirely free of restrictions regarding geometrical and constitutive nonlinearities and offers an accompanying versatile computational approach to continuum defect mechanics. In this monograph, I present a detailed summary account of my approach towards configurational mechanics, thereby fostering my view that configurational forces are indeed dissipation-consistent to configurational changes.


Spatial and Material Forces in Nonlinear Continuum Mechanics

Spatial and Material Forces in Nonlinear Continuum Mechanics

Author: Paul Steinmann

Publisher:

Published: 2022

Total Pages: 0

ISBN-13: 9783030890711

DOWNLOAD EBOOK

This monograph details spatial and material vistas on non-linear continuum mechanics in a dissipation-consistent approach. Thereby, the spatial vista renders the common approach to nonlinear continuum mechanics and corresponding spatial forces, whereas the material vista elaborates on configurational mechanics and corresponding material or rather configurational forces. Fundamental to configurational mechanics is the concept of force. In analytical mechanics, force is a derived object that is power conjugate to changes of generalised coordinates. For a continuum body, these are typically the spatial positions of its continuum points. However, if in agreement with the second law, continuum points, e.g. on the boundary, may also change their material positions. Configurational forces are then power conjugate to these configurational changes. A paradigm is a crack tip, i.e. a singular part of the boundary changing its position during crack propagation, with the related configurational force, typically the J-integral, driving its evolution, thereby consuming power, typically expressed as the energy release rate. Taken together, configurational mechanics is an unconventional branch of continuum physics rationalising and unifying the tendency of a continuum body to change its material configuration. It is thus the ideal formulation to tackle sophisticated problems in continuum defect mechanics. Configurational mechanics is entirely free of restrictions regarding geometrical and constitutive nonlinearities and offers an accompanying versatile computational approach to continuum defect mechanics. In this monograph, I present a detailed summary account of my approach towards configurational mechanics, thereby fostering my view that configurational forces are indeed dissipation-consistent to configurational changes.


Nonlinear Continuum Mechanics and Large Inelastic Deformations

Nonlinear Continuum Mechanics and Large Inelastic Deformations

Author: Yuriy I. Dimitrienko

Publisher: Springer Science & Business Media

Published: 2010-12-25

Total Pages: 742

ISBN-13: 9400700342

DOWNLOAD EBOOK

The book provides a rigorous axiomatic approach to continuum mechanics under large deformation. In addition to the classical nonlinear continuum mechanics – kinematics, fundamental laws, the theory of functions having jump discontinuities across singular surfaces, etc. - the book presents the theory of co-rotational derivatives, dynamic deformation compatibility equations, and the principles of material indifference and symmetry, all in systematized form. The focus of the book is a new approach to the formulation of the constitutive equations for elastic and inelastic continua under large deformation. This new approach is based on using energetic and quasi-energetic couples of stress and deformation tensors. This approach leads to a unified treatment of large, anisotropic elastic, viscoelastic, and plastic deformations. The author analyses classical problems, including some involving nonlinear wave propagation, using different models for continua under large deformation, and shows how different models lead to different results. The analysis is accompanied by experimental data and detailed numerical results for rubber, the ground, alloys, etc. The book will be an invaluable text for graduate students and researchers in solid mechanics, mechanical engineering, applied mathematics, physics and crystallography, as also for scientists developing advanced materials.


Nonlinear Solid Mechanics for Finite Element Analysis: Statics

Nonlinear Solid Mechanics for Finite Element Analysis: Statics

Author: Javier Bonet

Publisher: Cambridge University Press

Published: 2016-06-23

Total Pages: 343

ISBN-13: 131668816X

DOWNLOAD EBOOK

Designing engineering components that make optimal use of materials requires consideration of the nonlinear static and dynamic characteristics associated with both manufacturing and working environments. The modeling of these characteristics can only be done through numerical formulation and simulation, which requires an understanding of both the theoretical background and associated computer solution techniques. By presenting both the nonlinear solid mechanics and the associated finite element techniques together, the authors provide, in the first of two books in this series, a complete, clear, and unified treatment of the static aspects of nonlinear solid mechanics. Alongside a range of worked examples and exercises are user instructions, program descriptions, and examples for the FLagSHyP MATLAB computer implementation, for which the source code is available online. While this book is designed to complement postgraduate courses, it is also relevant to those in industry requiring an appreciation of the way their computer simulation programs work.


Configurational Mechanics

Configurational Mechanics

Author: V.K. Kalpakides

Publisher: CRC Press

Published: 2004-02-01

Total Pages: 176

ISBN-13: 1482283956

DOWNLOAD EBOOK

This book comprises papers that were presented at the Symposium on Configurational Mechanics, during the 5th EUROMECH Soil Mechanics Conference in Thessaloniki in August 2003. Configurational (or material) mechanics -in contrast to Newtonian mechanics in Euclidean space- concerns any sort of change or "motion" in the material configuration. This fr


Mechanics of Material Forces

Mechanics of Material Forces

Author: Paul Steinmann

Publisher: Springer Science & Business Media

Published: 2006-01-20

Total Pages: 331

ISBN-13: 038726261X

DOWNLOAD EBOOK

The notion dealt with in this volume of proceedings is often traced back to the late 19th-century writings of a rather obscure scientist, C. V. Burton. A probable reason for this is that the painstaking de ciphering of this author's paper in the Philosophical Magazine (Vol. 33, pp. 191-204, 1891) seems to reveal a notion that was introduced in math ematical form much later, that of local structural rearrangement. This notion obviously takes place on the material manifold of modern con tinuum mechanics. It is more or less clear that seemingly different phe nomena - phase transition, local destruction of matter in the form of the loss of local ordering (such as in the appearance of structural defects or of the loss of cohesion by the appearance of damage or the exten sion of cracks), plasticity, material growth in the bulk or at the surface by accretion, wear, and the production of debris - should enter a com mon framework where, by pure logic, the material manifold has to play a prominent role. Finding the mathematical formulation for this was one of the great achievements of J. D. Eshelby. He was led to consider the apparent but true motion or displacement of embedded material inhomogeneities, and thus he began to investigate the "driving force" causing this motion or displacement, something any good mechanician would naturally introduce through the duahty inherent in mechanics since J. L. d'Alembert.


Defect and Material Mechanics

Defect and Material Mechanics

Author: C. Dascalu

Publisher: Springer Science & Business Media

Published: 2008-03-26

Total Pages: 287

ISBN-13: 1402069294

DOWNLOAD EBOOK

This volume presents recent developments in the theory of defects and the mechanics of material forces. Most of the contributions were presented at the International Symposium on Defect and Material Forces (ISDMM2007), held in Aussois, France, March 2007.


Nonlinear Continuum Mechanics

Nonlinear Continuum Mechanics

Author: Carlos Agelet de Saracibar

Publisher: Springer Nature

Published: 2023-08-22

Total Pages: 356

ISBN-13: 3031152077

DOWNLOAD EBOOK

This textbook on Continuum Mechanics presents 9 chapters. Chapters 1 and 2 are devoted to Tensor Algebra and Tensor Analysis. Part I of the book includes the next 3 chapters. All the content here is valid for both solid and fluid materials. At the end of Part I, the reader should be able to set up in local spatial/material form, the fundamental governing equations and inequalities for a Continuum Mechanics problem. Part II of the book, Chapters 6 to 10, is devoted to presenting some nonlinear constitutive models for Nonlinear Solid Mechanics, including Finite Deformation Hyperelasticity, Finite Deformation Plasticity, Finite Deformation Coupled Thermoplasticity, and Finite Deformation Contact Mechanics. The constitutive equations are derived within a thermodynamically consistent framework. Finite deformation elastoplasticity models are based on a multiplicative decomposition of the deformation gradient and the notion of an intermediate configuration. Different formulations based on the intermediate configuration, the current or spatial configuration, and the material configuration are considered. The last chapter is devoted to Variational Methods in Solid Mechanics, a fundamental topic in Computational Mechanics. The book may be used as a textbook for an advanced Master’s course on Nonlinear Continuum Mechanics for graduate students in Civil, Mechanical or Aerospace Engineering, Applied Mathematics, or Applied Physics, with an interest in Continuum Mechanics and Computational Mechanics.


III European Conference on Computational Mechanics

III European Conference on Computational Mechanics

Author: C. A. Mota Soares

Publisher: Springer Science & Business Media

Published: 2008-06-05

Total Pages: 861

ISBN-13: 1402053703

DOWNLOAD EBOOK

III European Conference on Computational Mechanics: Solids, Structures and Coupled Problem in Engineering Computational Mechanics in Solid, Structures and Coupled Problems in Engineering is today a mature science with applications to major industrial projects. This book contains the edited version of the Abstracts of Plenary and Keynote Lectures and Papers, and a companion CD-ROM with the full-length papers, presented at the III European Conference on Computational Mechanics: Solids, Structures and Coupled Problems in Engineering (ECCM-2006), held in the National Laboratory of Civil Engineering, Lisbon, Portugal 5th - 8th June 2006. The book reflects the state-of-art of Computation Mechanics in Solids, Structures and Coupled Problems in Engineering and it includes contributions by the world most active researchers in this field.