Space-Time Characterization of Laser Plasma Interactions in the Warm Dense Matter Regime

Space-Time Characterization of Laser Plasma Interactions in the Warm Dense Matter Regime

Author:

Publisher:

Published: 2008

Total Pages: 15

ISBN-13:

DOWNLOAD EBOOK

Laser plasma interaction experiments have been performed using a fs Titanium Sapphire laser. Plasmas have been generated from planar PMMA targets using single laser pulses with 3.3 mJ pulse energy, 50 fs pulse duration at 800 nm wavelength. The electron density distributions of the plasmas in different delay times have been characterized by means of Nomarski Interferometry. Experimental data were compared with hydrodynamic simulation. First results to characterize the plasma density and temperature as a function of space and time are obtained. This work aims to generate plasmas in the warm dense matter (WDM) regime at near solid-density in an ultra-fast laser target interaction process. Plasmas under these conditions can serve as targets to develop x-ray Thomson scattering as a plasma diagnostic tool, e.g., using the VUV free-electron laser (FLASH) at DESY Hamburg.


Time-Space Position of Warm Dense Matter in Laser Plasma Interaction Process

Time-Space Position of Warm Dense Matter in Laser Plasma Interaction Process

Author: O. L. Landen

Publisher:

Published: 2006

Total Pages: 14

ISBN-13:

DOWNLOAD EBOOK

Laser plasma interaction experiments have been perform performed using an fs Titanium Sapphire laser. Plasmas have been generated from planar PMMA targets using single laser pulses with 3.3 mJ pulse energy, 50 fs pulse duration at 800 nm wavelength. Electron density distributions of the plasmas in different delay times have been characterized by means of Nomarski Interferometry. Experimental data were cautiously compared with relevant 1D numerical simulation. Finally these results provide a first experience of searching for the time-space position of the so-called warm dense plasma in an ultra fast laser target interaction process. These experiments aim to prepare near solid-density plasmas for Thomson scattering experiments using the short wavelength free-electron laser FLASH, DESY Hamburg.


Plasma Scattering of Electromagnetic Radiation

Plasma Scattering of Electromagnetic Radiation

Author: John Sheffield

Publisher: Academic Press

Published: 2010-11-25

Total Pages: 512

ISBN-13: 0080952038

DOWNLOAD EBOOK

This work presents one of the most powerful methods of plasma diagnosis in exquisite detail, to guide researchers in the theory and measurement techniques of light scattering in plasmas. Light scattering in plasmas is essential in the research and development of fusion energy, environmental solutions, and electronics. Referred to as the "Bible" by researchers, the work encompasses fusion and industrial applications essential in plasma research. It is the only comprehensive resource specific to the plasma scattering technique. It provides a wide-range of experimental examples and discussion of their principles with worked examples to assist researchers in applying the theory. Computing techniques for solving basic equations helps researchers compare data to the actual experiment New material on advances on the experimental side, such as the application of high density plasmas of inertial fusion Worked out examples of the scattering technique for easier comprehension of theory


Laser-Plasma Interactions

Laser-Plasma Interactions

Author: Dino A. Jaroszynski

Publisher: CRC Press

Published: 2009-03-27

Total Pages: 454

ISBN-13: 1584887796

DOWNLOAD EBOOK

A Solid Compendium of Advanced Diagnostic and Simulation ToolsExploring the most exciting and topical areas in this field, Laser-Plasma Interactions focuses on the interaction of intense laser radiation with plasma. After discussing the basic theory of the interaction of intense electromagnetic radiation fields with matter, the book covers three ap


Laser-Plasma Interactions and Applications

Laser-Plasma Interactions and Applications

Author: Paul McKenna

Publisher: Springer Science & Business Media

Published: 2013-03-29

Total Pages: 472

ISBN-13: 3319000381

DOWNLOAD EBOOK

Laser-Plasma Interactions and Applications covers the fundamental and applied aspects of high power laser-plasma physics. With an internationally renowned team of authors, the book broadens the knowledge of young researchers working in high power laser-plasma science by providing them with a thorough pedagogical grounding in the interaction of laser radiation with matter, laser-plasma accelerators, and inertial confinement fusion. The text is organised such that the theoretical foundations of the subject are discussed first, in Part I. In Part II, topics in the area of high energy density physics are covered. Parts III and IV deal with the applications to inertial confinement fusion and as a driver of particle and radiation sources, respectively. Finally, Part V describes the principle diagnostic, targetry, and computational approaches used in the field. This book is designed to give students a thorough foundation in the fundamental physics of laser-plasma interactions. It will also provide readers with knowledge of the latest research trends and elucidate future exciting challenges in laser-plasma science.


Laser-Plasma Interactions 4

Laser-Plasma Interactions 4

Author: M.B Hooper

Publisher: CRC Press

Published: 2020-11-26

Total Pages: 410

ISBN-13: 1000156958

DOWNLOAD EBOOK

Laser-Plasma Interactions 4 is the fourth book in a series devoted to the study of laser-plasma interactions. Subjects covered include laser light propagation, instabilities, compression and hydrodynamics, spectroscopy, diagnostics, computer code, dense plasmas, high-power lasers, X-UV sources and lasers, beat waves, and transport processes.


The Physics Of Laser Plasma Interactions

The Physics Of Laser Plasma Interactions

Author: William Kruer

Publisher: CRC Press

Published: 2019-08-20

Total Pages: 197

ISBN-13: 1000754200

DOWNLOAD EBOOK

This book focuses on the physics of laser plasma interactions and presents a complementary and very useful numerical model of plasmas. It describes the linear theory of light wave propagation in plasmas, including linear mode conversion into plasma waves and collisional damping.


Applications of Laser-Plasma Interactions

Applications of Laser-Plasma Interactions

Author: Shalom Eliezer

Publisher: CRC Press

Published: 2008-12-22

Total Pages: 293

ISBN-13: 084937605X

DOWNLOAD EBOOK

Recent advances in the development of lasers with more energy, power, and brightness have opened up new possibilities for exciting applications. Applications of Laser-Plasma Interactions reviews the current status of high power laser applications. The book first explores the science and technology behind the ignition and burn of imploded fusion fue


The Physics of Laser Plasmas and Applications - Volume 1

The Physics of Laser Plasmas and Applications - Volume 1

Author: Hideaki Takabe

Publisher: Springer Nature

Published: 2020-08-28

Total Pages: 399

ISBN-13: 3030496139

DOWNLOAD EBOOK

The series of books discusses the physics of laser and matter interaction, fluid dynamics of high-temperature and high-density compressible plasma, and kinetic phenomena and particle dynamics in laser-produced plasma. The book (Vol.1) gives the physics of intense-laser absorption in matter and/or plasma in non-relativistic and relativistic laser-intensity regime. In many cases, it is explained with clear images of physics so that an intuitive understanding of individual physics is possible for non-specialists. For intense-laser of 1013-16 W/cm2, the laser energy is mainly absorbed via collisional process, where the oscillation energy is converted to thermal energy by non-adiabatic Coulomb collision with the ions. Collisionless interactions with the collective modes in plasma are also described. The main topics are the interaction of ultra-intense laser and plasma for the intensity near and over 1018W/cm2. In such regime, relativistic dynamics become essential. A new physics appears due to the relativistic effects, such as mass correction, relativistic nonlinear force, chaos physics of particle motions, and so on. The book provides clearly the theoretical base for challenging the laser-plasma interaction physics in the wide range of power lasers. It is suitable as a textbook for upper-undergraduate and graduate students as well as for readers who want to understand the whole physics structure about what happen when an intense-laser irradiates any materials including solids, gas etc. Explaining the physics intuitively without complicated mathematics, it is also a valuable resource for engineering students and researchers as well as for self-study.