Principles of Magnetohydrodynamics

Principles of Magnetohydrodynamics

Author: J. P. Goedbloed

Publisher: Cambridge University Press

Published: 2004-08-05

Total Pages: 644

ISBN-13: 9780521626071

DOWNLOAD EBOOK

This textbook provides a modern and accessible introduction to magnetohydrodynamics (MHD). It describes the two main applications of plasma physics, laboratory research on thermo-nuclear fusion energy and plasma astrophysics of the solar system, stars and accretion disks, from the single viewpoint of MHD. This approach provides effective methods and insights for the interpretation of plasma phenomena on virtually all scales, from the laboratory to the universe. It equips the reader with the necessary tools to understand the complexities of plasma dynamics in extended magnetic structures. The classical MHD model is developed in detail without omitting steps in the derivations and problems are included at the end of each chapter. This text is ideal for senior-level undergraduate and graduate courses in plasma physics and astrophysics.


An Introduction to Magnetohydrodynamics

An Introduction to Magnetohydrodynamics

Author: P. A. Davidson

Publisher: Cambridge University Press

Published: 2001-03-05

Total Pages: 456

ISBN-13: 9780521794879

DOWNLOAD EBOOK

This book is an introductory text on magnetohydrodynamics (MHD) - the study of the interaction of magnetic fields and conducting fluids.


Magnetohydrodynamics of Laboratory and Astrophysical Plasmas

Magnetohydrodynamics of Laboratory and Astrophysical Plasmas

Author: Hans Goedbloed

Publisher: Cambridge University Press

Published: 2019-01-31

Total Pages: 995

ISBN-13: 110857758X

DOWNLOAD EBOOK

With ninety per cent of visible matter in the universe existing in the plasma state, an understanding of magnetohydrodynamics is essential for anyone looking to understand solar and astrophysical processes, from stars to accretion discs and galaxies; as well as laboratory applications focused on harnessing controlled fusion energy. This introduction to magnetohydrodynamics brings together the theory of plasma behavior with advanced topics including the applications of plasma physics to thermonuclear fusion and plasma- astrophysics. Topics covered include streaming and toroidal plasmas, nonlinear dynamics, modern computational techniques, incompressible plasma turbulence and extreme transonic and relativistic plasma flows. The numerical techniques needed to apply magnetohydrodynamics are explained, allowing the reader to move from theory to application and exploit the latest algorithmic advances. Bringing together two previous volumes: Principles of Magnetohydrodynamics and Advanced Magnetohydrodynamics, and completely updated with new examples, insights and applications, this volume constitutes a comprehensive reference for students and researchers interested in plasma physics, astrophysics and thermonuclear fusion.


Fundamentals of Magnetohydrodynamics

Fundamentals of Magnetohydrodynamics

Author: R.V. Polovin

Publisher: Springer

Published: 1990-01-31

Total Pages: 360

ISBN-13:

DOWNLOAD EBOOK

A text for teachers and students in experimental physics and research engineering, introducing the ideas of magnetohydrodynamics (MHD), showing the methods used in MHD, and preparing students for reading the original literature. Based on the mathematical study of simplified models. Annotation copyri


Fundamentals of Astrophysical Fluid Dynamics

Fundamentals of Astrophysical Fluid Dynamics

Author: Shoji Kato

Publisher: Springer Nature

Published: 2020-06-19

Total Pages: 635

ISBN-13: 9811541744

DOWNLOAD EBOOK

This book offers an overview of the fundamental dynamical processes, which are necessary to understand astrophysical phenomena, from the viewpoint of hydrodynamics, magnetohydrodynamics, and radiation hydrodynamics. The book consists of three parts: The first discusses the fundamentals of hydrodynamics necessary to understand the dynamics of astrophysical objects such as stars, interstellar gases and accretion disks. The second part reviews the interactions between gases and magnetic fields on fluid motions – the magnetohydrodynamics – highlighting the important role of magnetic fields in dynamical phenomena under astrophysical environments. The third part focuses on radiation hydrodynamics, introducing the hydrodynamic phenomena characterized by the coupling of radiation and gas motions and further on relativistic radiation hydrodynamics. Intended as a pedagogical introduction for advanced undergraduate and graduate students, it also provides comprehensive coverage of the fundamentals of astrophysical fluid dynamics, making it an effective resource not only for graduate courses, but also for beginners wanting to learn about hydrodynamics, magnetohydrodynamics, and radiation hydrodynamics in astrophysics independently.


Magnetohydrodynamics and Fluid Dynamics: Action Principles and Conservation Laws

Magnetohydrodynamics and Fluid Dynamics: Action Principles and Conservation Laws

Author: Gary Webb

Publisher: Springer

Published: 2018-02-05

Total Pages: 306

ISBN-13: 3319725114

DOWNLOAD EBOOK

This text focuses on conservation laws in magnetohydrodynamics, gasdynamics and hydrodynamics. A grasp of new conservation laws is essential in fusion and space plasmas, as well as in geophysical fluid dynamics; they can be used to test numerical codes, or to reveal new aspects of the underlying physics, e.g., by identifying the time history of the fluid elements as an important key to understanding fluid vorticity or in investigating the stability of steady flows. The ten Galilean Lie point symmetries of the fundamental action discussed in this book give rise to the conservation of energy, momentum, angular momentum and center of mass conservation laws via Noether’s first theorem. The advected invariants are related to fluid relabeling symmetries – so-called diffeomorphisms associated with the Lagrangian map – and are obtained by applying the Euler-Poincare approach to Noether’s second theorem. The book discusses several variants of helicity including kinetic helicity, cross helicity, magnetic helicity, Ertels’ theorem and potential vorticity, the Hollman invariant, and the Godbillon Vey invariant. The book develops the non-canonical Hamiltonian approach to MHD using the non-canonical Poisson bracket, while also refining the multisymplectic approach to ideal MHD and obtaining novel nonlocal conservation laws. It also briefly discusses Anco and Bluman’s direct method for deriving conservation laws. A range of examples is used to illustrate topological invariants in MHD and fluid dynamics, including the Hopf invariant, the Calugareanu invariant, the Taylor magnetic helicity reconnection hypothesis for magnetic fields in highly conducting plasmas, and the magnetic helicity of Alfvén simple waves, MHD topological solitons, and the Parker Archimedean spiral magnetic field. The Lagrangian map is used to obtain a class of solutions for incompressible MHD. The Aharonov-Bohm interpretation of magnetic helicity and cross helicity is discussed. In closing, examples of magnetosonic N-waves are used to illustrate the role of the wave number and group velocity concepts for MHD waves. This self-contained and pedagogical guide to the fundamentals will benefit postgraduate-level newcomers and seasoned researchers alike.


Advanced Magnetohydrodynamics

Advanced Magnetohydrodynamics

Author: J. P. Goedbloed

Publisher: Cambridge University Press

Published: 2010-04-29

Total Pages: 651

ISBN-13: 1139487280

DOWNLOAD EBOOK

Following on from the companion volume Principles of Magnetohydrodynamics, this textbook analyzes the applications of plasma physics to thermonuclear fusion and plasma astrophysics from the single viewpoint of MHD. This approach turns out to be ever more powerful when applied to streaming plasmas (the vast majority of visible matter in the Universe), toroidal plasmas (the most promising approach to fusion energy), and nonlinear dynamics (where it all comes together with modern computational techniques and extreme transonic and relativistic plasma flows). The textbook interweaves theory and explicit calculations of waves and instabilities of streaming plasmas in complex magnetic geometries. It is ideally suited to advanced undergraduate and graduate courses in plasma physics and astrophysics.


An Introduction to Plasma Astrophysics and Magnetohydrodynamics

An Introduction to Plasma Astrophysics and Magnetohydrodynamics

Author: M. Goossens

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 215

ISBN-13: 9400710763

DOWNLOAD EBOOK

Most of the visible matter in the universe exists in the plasma state. Plasmas are of major importance for space physics, solar physics, and astrophysics. On Earth they are essential for magnetic controlled thermonuclear fusion. This textbook collects lecture notes from a one-semester course taught at the K.U. Leuven to advanced undergraduate students in applied mathematics and physics. A particular strength of this book is that it provides a low threshold introduction to plasmas with an emphasis on first principles and fundamental concepts and properties. The discussion of plasma models is to a large extent limited to Magnetohydrodynamics (MHD) with its merits and limitations clearly explained. MHD provides the students on their first encounter with plasmas, with a powerful plasma model that they can link to familiar classic fluid dynamics. The solar wind is studied as an example of hydrodynamics and MHD at work in solar physics and astrophysics.