Solving Direct and Inverse Heat Conduction Problems

Solving Direct and Inverse Heat Conduction Problems

Author: Jan Taler

Publisher: Springer Science & Business Media

Published: 2010-04-16

Total Pages: 890

ISBN-13: 3540334718

DOWNLOAD EBOOK

This book presents a solution for direct and inverse heat conduction problems, discussing the theoretical basis for the heat transfer process and presenting selected theoretical and numerical problems in the form of exercises with solutions. The book covers one-, two- and three dimensional problems which are solved by using exact and approximate analytical methods and numerical methods. An accompanying CD-Rom includes computational solutions of the examples and extensive FORTRAN code.


Inverse Heat Transfer Problems

Inverse Heat Transfer Problems

Author: Oleg M. Alifanov

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 360

ISBN-13: 3642764363

DOWNLOAD EBOOK

This research monograph presents a systematic treatment of the theory of the propagation of transient electromagnetic fields (such as optical pulses) through dielectric media which exhibit both dispersion a.nd absorption. The work divides naturally into two parts. Part I presents a summary of the fundamental theory of the radiation and propagation of rather general electromagnetic waves in causal, linear media which are homogeneous and isotropic but which otherwise have rather general dispersive and absorbing properties. In Part II, we specialize to the propagation of a plane, transient electromagnetic field in a homogeneous dielectric. Although we have made some contributions to the fundamental theory given in Part I, most of the results of our own research appear in Part II. The purpose of the theory presented in Part II is to predict and to explain in explicit detail the dynamics of the field after it has propagated far enough through the medium to be in the mature-dispersion regime. It is the subject of a classic theory, based on the research conducted by A. Sommerfeld and L.


Inverse Heat Transfer

Inverse Heat Transfer

Author: M. Necat Ozisik

Publisher: CRC Press

Published: 2000-04-01

Total Pages: 370

ISBN-13: 9781560328384

DOWNLOAD EBOOK

This book introduces the fundamental concepts of inverse heat transfer problems. It presents in detail the basic steps of four techniques of inverse heat transfer protocol, as a parameter estimation approach and as a function estimation approach. These techniques are then applied to the solution of the problems of practical engineering interest involving conduction, convection, and radiation. The text also introduces a formulation based on generalized coordinates for the solution of inverse heat conduction problems in two-dimensional regions.


Inverse Heat Conduction

Inverse Heat Conduction

Author: James V. Beck

Publisher: James Beck

Published: 1985-10-02

Total Pages: 336

ISBN-13: 9780471083191

DOWNLOAD EBOOK

Here is the only commercially published work to deal with the engineering problem of determining surface heat flux and temperature history based on interior temperature measurements. Provides the analytical techniques needed to arrive at otherwise difficult solutions, summarizing the findings of the last ten years. Topics include the steady state solution, Duhamel's Theorem, ill-posed problems, single future time step, and more.


Inverse Heat Conduction and Heat Exchangers

Inverse Heat Conduction and Heat Exchangers

Author: Suvanjan Bhattacharyya

Publisher: BoD – Books on Demand

Published: 2020-12-02

Total Pages: 204

ISBN-13: 1789851777

DOWNLOAD EBOOK

A direct solution of the heat conduction equation with prescribed initial and boundary conditions yields temperature distribution inside a specimen. The direct solution is mathematically considered as a well-posed one because the solution exists, is unique, and continuously depends on input data. The estimation of unknown parameters from the measured temperature data is known as the inverse problem of heat conduction. An error in temperature measurement, thermal time lagging, thermocouple-cavity, or signal noise data makes stability a problem in the estimation of unknown parameters. The solution of the inverse problem can be obtained by employing the gradient or non-gradient based inverse algorithm. The aim of this book is to analyze the inverse problem and heat exchanger applications in the fields of aerospace, mechanical, applied mechanics, environment sciences, and engineering.


Encyclopedia of Thermal Stresses

Encyclopedia of Thermal Stresses

Author: Richard B. Hetnarski

Publisher: Springer

Published: 2013-12-04

Total Pages: 0

ISBN-13: 9789400727380

DOWNLOAD EBOOK

The Encyclopedia of Thermal Stresses is an important interdisciplinary reference work. In addition to topics on thermal stresses, it contains entries on related topics, such as the theory of elasticity, heat conduction, thermodynamics, appropriate topics on applied mathematics, and topics on numerical methods. The Encyclopedia is aimed at undergraduate and graduate students, researchers and engineers. It brings together well established knowledge and recently received results. All entries were prepared by leading experts from all over the world, and are presented in an easily accessible format. The work is lavishly illustrated, examples and applications are given where appropriate, ideas for further development abound, and the work will challenge many students and researchers to pursue new results of their own. This work can also serve as a one-stop resource for all who need succinct, concise, reliable and up to date information in short encyclopedic entries, while the extensive references will be of interest to those who need further information. For the coming decade, this is likely to remain the most extensive and authoritative work on Thermal Stresses.


Heat Conduction

Heat Conduction

Author: David W. Hahn

Publisher: John Wiley & Sons

Published: 2012-08-20

Total Pages: 754

ISBN-13: 1118330110

DOWNLOAD EBOOK

HEAT CONDUCTION Mechanical Engineering THE LONG-AWAITED REVISION OF THE BESTSELLER ON HEAT CONDUCTION Heat Conduction, Third Edition is an update of the classic text on heat conduction, replacing some of the coverage of numerical methods with content on micro- and nanoscale heat transfer. With an emphasis on the mathematics and underlying physics, this new edition has considerable depth and analytical rigor, providing a systematic framework for each solution scheme with attention to boundary conditions and energy conservation. Chapter coverage includes: Heat conduction fundamentals Orthogonal functions, boundary value problems, and the Fourier Series The separation of variables in the rectangular coordinate system The separation of variables in the cylindrical coordinate system The separation of variables in the spherical coordinate system Solution of the heat equation for semi-infinite and infinite domains The use of Duhamel’s theorem The use of Green’s function for solution of heat conduction The use of the Laplace transform One-dimensional composite medium Moving heat source problems Phase-change problems Approximate analytic methods Integral-transform technique Heat conduction in anisotropic solids Introduction to microscale heat conduction In addition, new capstone examples are included in this edition and extensive problems, cases, and examples have been thoroughly updated. A solutions manual is also available. Heat Conduction is appropriate reading for students in mainstream courses of conduction heat transfer, students in mechanical engineering, and engineers in research and design functions throughout industry.


Nonlinear Systems in Heat Transfer

Nonlinear Systems in Heat Transfer

Author: Davood Domairry Ganji

Publisher: Elsevier

Published: 2017-09-15

Total Pages: 289

ISBN-13: 0128120207

DOWNLOAD EBOOK

Nonlinear Heat Transfer: Mathematical Modeling and Analytical Methods addresses recent progress and original research in nonlinear science and its application in the area of heat transfer, with a particular focus on the most important advances and challenging applications. The importance of understanding analytical methods for solving linear and nonlinear constitutive equations is essential in studying engineering problems. This book provides a comprehensive range of (partial) differential equations, applied in the field of heat transfer, tackling a comprehensive range of nonlinear mathematical problems in heat radiation, heat conduction, heat convection, heat diffusion and non-Newtonian fluid systems. Providing various innovative analytical techniques and their practical application in nonlinear engineering problems is the unique point of this book. Drawing a balance between theory and practice, the different chapters of the book focus not only on the broader linear and nonlinear problems, but also applied examples of practical solutions by the outlined methodologies. - Demonstrates applied mathematical techniques in the engineering applications, especially in nonlinear phenomena - Exhibits a complete understanding of analytical methods and nonlinear differential equations in heat transfer - Provides the tools to model and interpret applicable methods in heat transfer processes or systems to solve related complexities


Thermal Quadrupoles

Thermal Quadrupoles

Author: Denis Maillet

Publisher:

Published: 2000-11-17

Total Pages: 392

ISBN-13:

DOWNLOAD EBOOK

This superb text describes a novel and powerful method for allowing design engineers to firstly model a linear problem in heat conduction, then build a solution in an explicit form and finally obtain a numerical solution. It constitutes a modelling and calculation tool based on a very efficient and systemic methodological approach. Solving the heat equations through integral transforms does not constitute a new subject. However, finding a solution generally constitutes only one part of the problem. In design problems, an initial thermal design has to be tested through the calculation of the temperature or flux field, followed by an analysis of this field in terms of constraints. A modified design is then proposed, followed by a new thermal field calculation, and so on until the right design is found. The thermal quadrupole method allows this often painful iterative procedure to be removed by allowing only one calculation. The chapters in this book increase in complexity from a rapid presentation of the method for one dimensional transient problems in chapter one, to non uniform boundary conditions or inhomogeneous media in chapter six. In addition, a wide range of corrected problems of contemporary interest are presented mainly in chapters three and six with their numerical implementation in MATLAB (r) language. This book covers the whole scope of linear problems and presents a wide range of concrete issues of contemporary interest such as harmonic excitations of buildings, transfer in composite media, thermal contact resistance and moving material heat transfer. Extensions of this method to coupled transfers in a semi-transparent medium and to mass transfer in porous media are considered respectively in chapters seven and eight. Chapter nine is devoted to practical numerical methods that can be used to inverse the Laplace transform. Written from an engineering perspective, with applications to real engineering problems, this book will be of significant interest not only to researchers, lecturers and graduate students in mechanical engineering (thermodynamics) and process engineers needing to model a heat transfer problem to obtain optimized operating conditions, but also to researchers interested in the simulation or design of experiments where heat transfer play a significant role.


The Mathematics of Diffusion

The Mathematics of Diffusion

Author: John Crank

Publisher: Oxford University Press

Published: 1979

Total Pages: 428

ISBN-13: 9780198534112

DOWNLOAD EBOOK

Though it incorporates much new material, this new edition preserves the general character of the book in providing a collection of solutions of the equations of diffusion and describing how these solutions may be obtained.