ORGANIC PHOTOVOLTAICS

ORGANIC PHOTOVOLTAICS

Author: Jon-Paul Sun

Publisher:

Published: 2017

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

In recent decades the demand for low-cost and sustainable energy sources has fueled the growth of photovoltaic research. Among the various photovoltaic technologies, organic semiconductors offer a light-weight and inherently-flexible solution that can be fabricated in a roll-to-roll process, significantly reducing fabrication and installation costs. Additionally, due to their transparent nature a number of previously unutilized architectural surfaces such as windows, building facades, and vehicle panels can be employed for energy production. Among solution-processed organic photovoltaics, fullerenes have dominated as the highest performing electron acceptor materials. However, their low absorption in the solar spectrum and high-energy synthesis is undesirable. Non-fullerene acceptors have the potential for low-cost synthesis while providing complementary absorption to the donor material, enhancing photocurrent. This dissertation presents the design, characterization, and integration into solar cells of novel non-fullerene acceptors. A family of related push-pull chromophores with phthalimide or naphthalimide end-groups, as well as perylene diimide-based acceptors were characterized using a combination of ultraviolet-visible absorption spectroscopy and ultraviolet photoemission spectroscopy. The acceptor molecules were integrated into thin-film transistors to measure field-effect mobilities. Solution-processed bulk heterojunction photovoltaic devices were fabricated and characterized using atomic force microscopy and by measuring current density-voltage curves and external quantum efficiencies while under illumination. The best performing devices achieved power conversion efficiencies of 5.5 %, where overall performance was limited by domain sizes in the blend films. Difficulties in forming nanoscale domain sizes in blend films are presented and discussed. A low-cost nanoembossing technique utilizing anodized aluminum oxide templates is presented to address the associated challenges with bulk heterojunctions. Initial results show that small-molecule acceptor films can be nanostructured prior to donor material deposition. This presents a viable method for fabricating large-area modules with predetermined nanoscale domain sizes, that is compatible with roll-to-roll processing.


Fundamentals of Solar Cell Design

Fundamentals of Solar Cell Design

Author: Inamuddin

Publisher: John Wiley & Sons

Published: 2021-08-24

Total Pages: 578

ISBN-13: 1119724708

DOWNLOAD EBOOK

Solar cells are semiconductor devices that convert light photons into electricity in photovoltaic energy conversion and can help to overcome the global energy crisis. Solar cells have many applications including remote area power systems, earth-orbiting satellites, wristwatches, water pumping, photodetectors and remote radiotelephones. Solar cell technology is economically feasible for commercial-scale power generation. While commercial solar cells exhibit good performance and stability, still researchers are looking at many ways to improve the performance and cost of solar cells via modulating the fundamental properties of semiconductors. Solar cell technology is the key to a clean energy future. Solar cells directly harvest energy from the sun’s light radiation into electricity are in an ever-growing demand for future global energy production. Solar cell-based energy harvesting has attracted worldwide attention for their notable features, such as cheap renewable technology, scalable, lightweight, flexibility, versatility, no greenhouse gas emission, environment, and economy friendly and operational costs are quite low compared to other forms of power generation. Thus, solar cell technology is at the forefront of renewable energy technologies which are used in telecommunications, power plants, small devices to satellites. Aiming at large-scale implementation can be manipulated by various types used in solar cell design and exploration of new materials towards improving performance and reducing cost. Therefore, in-depth knowledge about solar cell design is fundamental for those who wish to apply this knowledge and understanding in industries and academics. This book provides a comprehensive overview on solar cells and explores the history to evolution and present scenarios of solar cell design, classification, properties, various semiconductor materials, thin films, wafer-scale, transparent solar cells, and so on. It also includes solar cells’ characterization analytical tools, theoretical modeling, practices to enhance conversion efficiencies, applications and patents.


Molecular Structures and Device Properties of Organic Solar Cells

Molecular Structures and Device Properties of Organic Solar Cells

Author: Zhenghao Mao

Publisher:

Published: 2014

Total Pages: 198

ISBN-13:

DOWNLOAD EBOOK

Organic solar cells (OSCs), consisted of carbon-based organic semiconductors, either polymers or small molecules, have recently attracted the attention of both academic and industry due to their unique properties such as easy processing, flexibility and scalability. One major limitation toward commercialization is the low power conversion efficiency (PCE) compared to inorganic solar cells. Thus, much research in this field is focused on improving the efficiency. A better understanding to the relationship between the properties of organic semiconductors and the solar device performance is required. In this thesis, perfluorinated-end modified poly(3-hexylthiophene), core-substituted naphthalene diimide, and Zn (II) complexes with azadipyrromethene were investigated. Their properties and applications in organic photovolatic (OPV) are discussed.Previous studies suggested that end-group modification of P3HT affects device efficiency, and that some fluorine in the end group slightly improve the efficiency. In order to further understand how perfluorinated end-groups affect device performance of blends of poly(3-hexylthiophene) (P3HT) and 1-(3-methoxycarbonyl) propyl-1-phenyl [6, 6] C61 (PCBM), we synthesized a series of well-defined P3HT with differing perfluoroalkyl length by Stille coupling of the bromine end of P3HT and stannylated 2-perfluoroalkylthiophene. The reactions occurred quantitatively, confirmed by 1H and 19F NMR spectroscopy, and by MALDI-ToF mass spectroscopy. Electron filtering transmission electron microscopy (EF-TEM) revealed that the polymer/PCBM phase separate on the nanoscale. However, solar cells of the modified P3HTs with PCBM had a lower power conversion efficiency than that of un-modified P3HT:PCBM, suggesting that perfluoroalkyl end-groups are detrimental to solar cell performance.The performance of solution-processed organic photovoltaic is seriously limited by the absorption and energy tuning potential of fullerene-based electron acceptors. Overcoming these limitations requires the development of non-fullerene acceptors. Core-substituted naphthalene diimides (cNDI) are good candidates as non-fullerene acceptors for organic photovoltaic, because they have high electron affinity, excellent electron transport properties, and tunable energy levels. We synthesized several cNDIs with different imide core substituents and different alkylamino substituents (RF1-6). Their optical and electrochemical properties and OPV device properties as electron acceptors were studied. Particularly, RF1 was investigated as electron accepting material for optimization of solar cells. The LUMO energy level of RF1 is -3.7 eV, higher than PCBM (-4.0 eV); correspondingly, a high Voc (~1 V) can be reached from blends of P3HT and RF1. The power conversion efficiency improves from 0.31% (as-casted) or 0.48% (pre-annealed) to 0.96% with a processing 1,8-diiodooctane(DIO) additive at an optimum concentration of 0.2 vol%. The results are explained by changes in morphology observed by atomic force microscopy (AFM) and transmitting electron microscopy (TEM) images. Charge transport properties were estimated by space-charge limited current (SCLC) model, indicating that the electron mobility determines the OSC performance.One reason why efficiency of non-fullerene based solar cell have been relatively low is partly because non-fullerene acceptors are often planar and tend to form unfavorable phase-separated domains when blended with typical donors. We synthesized and characterized a series of new solution-processable azadipyromethene-based complexes, Zn(WS1-5)2. These new complexes have high electron affinity and strong accepting properties, and behave as good electron acceptors in organic solar cells. The best device performance was obtained from Zn(WS3)2 acceptor. The 3D nature of this acceptor prevents crystallization and promotes a favorable nanoscale morphology to give a high PCE of 4.10%. The acceptor also significantly contributed to photocurrent generation by harvesting light between 600 nm and 800 nm. These results demonstrate a new paradigm to designing acceptors with tunable properties that can overcome the limitations of fullerenes.


Organic Solar Cells

Organic Solar Cells

Author: Liming Ding

Publisher: John Wiley & Sons

Published: 2022-02-09

Total Pages: 988

ISBN-13: 3527833668

DOWNLOAD EBOOK

Organic Solar Cells A timely and singular resource on the latest advances in organic photovoltaics Organic photovoltaics are gaining widespread attention due to their solution processability, tunable electronic properties, low temperature manufacture, and cheap and light materials. Their wide range of potential applications may result in significant near-term commercialization of the technology. In Organic Solar Cells: Materials Design, Technology and Commercialization, renowned scientist Dr. Liming Ding delivers a comprehensive exploration of organic solar cells, including discussions of their key materials, mechanisms, molecular designs, stability features, and applications. The book presents the most state-of-the-art developments in the field alongside fulsome treatments of the commercialization potential of various organic solar cell technologies. The author also provides: Thorough introductions to fullerene acceptors, polymer donors, and non-fullerene small molecule acceptors Comprehensive explorations of p-type molecular photovoltaic materials and polymer-polymer solar cell materials, devices, and stability Practical discussions of electron donating ladder-type heteroacenes for photovoltaic applications In-depth examinations of chlorinated organic and single-component organic solar cells, as well as the morphological characterization and manipulation of organic solar cells Perfect for materials scientists, organic and solid-state chemists, and solid-state physicists, Organic Solar Cells: Materials Design, Technology and Commercialization will also earn a place in the libraries of surface chemists and physicists and electrical engineers.


Handbook of Flexible Organic Electronics

Handbook of Flexible Organic Electronics

Author: Stergios Logothetidis

Publisher: Elsevier

Published: 2014-12-03

Total Pages: 483

ISBN-13: 1782420436

DOWNLOAD EBOOK

Organic flexible electronics represent a highly promising technology that will provide increased functionality and the potential to meet future challenges of scalability, flexibility, low power consumption, light weight, and reduced cost. They will find new applications because they can be used with curved surfaces and incorporated in to a number of products that could not support traditional electronics. The book covers device physics, processing and manufacturing technologies, circuits and packaging, metrology and diagnostic tools, architectures, and systems engineering. Part one covers the production, properties and characterisation of flexible organic materials and part two looks at applications for flexible organic devices. Reviews the properties and production of various flexible organic materials. Describes the integration technologies of flexible organic electronics and their manufacturing methods. Looks at the application of flexible organic materials in smart integrated systems and circuits, chemical sensors, microfluidic devices, organic non-volatile memory devices, and printed batteries and other power storage devices.


Chemical Science of π-Electron Systems

Chemical Science of π-Electron Systems

Author: Takeshi Akasaka

Publisher: Springer

Published: 2015-11-05

Total Pages: 765

ISBN-13: 4431553576

DOWNLOAD EBOOK

This book presents the most advanced review available of all aspects of π-electron systems, including novel structures, new synthetic protocols, chemical and physical properties, spectroscopic and computational insights, molecular engineering, device properties and physiological properties. π-Electron systems are ubiquitous in nature. Plants convert light energy into chemical energy by photosynthetic processes, in which chlorophylls and other porphyrinoids play an important role. On the one hand, research to learn about photosynthesis from nature has led to understanding of electron and energy transfer processes and to achieving artificial energy conversion systems inspired by nature. On the other hand, recent advances in organic and inorganic chemistry make it possible to construct novel π-electron systems that had never existed in nature. The authors of this book are from a variety of research fields including organic chemistry, inorganic chemistry, physical chemistry, materials science, and biology, providing a comprehensive overview of π-electron systems for a broad readership. Not only specialists but also graduate students working in π-electron systems will find the book of great interest. Throughout, the diverse potential for future fruitful applications of π-electron systems is revealed to the reader.


Organic Solar Cells

Organic Solar Cells

Author: Barry P. Rand

Publisher: CRC Press

Published: 2014-08-26

Total Pages: 812

ISBN-13: 9814463655

DOWNLOAD EBOOK

Organic photovoltaic (OPV) cells have the potential to make a significant contribution to the increasing energy needs of the future. In this book, 15 chapters written by selected experts explore the required characteristics of components present in an OPV device, such as transparent electrodes, electron- and hole-conducting layers, as well as electron donor and acceptor materials. Design, preparation, and evaluation of these materials targeting highest performance are discussed. This includes contributions on modeling down to the molecular level to device-level electrical and optical testing and modeling, as well as layer morphology control and characterization. The integration of the different components in device architectures suitable for mass production is described. Finally, the technical feasibility and economic viability of large-scale manufacturing using fast inexpensive roll-to-roll deposition technologies is assessed.