Solubilization and Dispersion of Carbon Nanotubes

Solubilization and Dispersion of Carbon Nanotubes

Author: Oxana Vasilievna Kharissova

Publisher: Springer

Published: 2017-09-01

Total Pages: 258

ISBN-13: 3319629506

DOWNLOAD EBOOK

This book describes a series of contemporary techniques and their combinations used for CNTs solubilization, from physical to chemical and biological, applying inorganic and organic compounds, as well as some metal complexes. In some cases, successive steps can be applied, for instance the use of low and high-weight surfactants, or mineral acid treatment for creation of –OH and –COOH groups and their further interaction with organic molecules. Each discussed method leads to an improvement of CNT solubility, frequently a considerable one. The formed dispersions can be stable for long periods of time, from several weeks to some months, and they sometimes even remain stable after centrifugation. Several special studies have been carried out in the areas of influence of solvent and light on CNTs dispersibility, combinations and abilities of surfactants, CNT cytotoxicity, etc. Applications of solubilized CNTs are discussed in this book as well.


Noncovalent Functionalization of Carbon Nanotubes

Noncovalent Functionalization of Carbon Nanotubes

Author: Claudia Backes

Publisher: Springer Science & Business Media

Published: 2012-02-07

Total Pages: 215

ISBN-13: 3642275826

DOWNLOAD EBOOK

In this thesis, Claudia Backes guides the reader through her multidisciplinary research into the non-covalent functionalization of carbon nanotubes in water. Although one of the most remarkable materials of the 21st century, carbon nanotubes often have limited application because of their intrinsically low solubility and polydispersity. The author shows that rational surfactant design is a powerful tool for chemists because it can unmask the key to solubilization and allow us to tailor nanotube surface and optical properties in a fully reversible fashion. Aspects of organic, physical and analytical chemistry, as well as colloidal sciences are covered in this outstanding work which brings us one step closer to exploiting this super-material to its full potential.


Advanced Nanomaterials

Advanced Nanomaterials

Author: Kurt E. Geckeler

Publisher: John Wiley & Sons

Published: 2009-11-10

Total Pages: 954

ISBN-13: 3527628959

DOWNLOAD EBOOK

In this first comprehensive compilation of review chapters on this hot topic, more than 30 experts from around the world provide in-depth chapters on their specific areas of expertise, covering such essential topics as: * Block Copolymer Systems, Nanofibers and Nanotubes * Helical Polymer-Based Supramolecular Films * Synthesis of Inorganic Nanotubes * Gold Nanoparticles and Carbon Nanotubes * Recent Advances in Metal Nanoparticle-Attached Electrodes * Oxidation Catalysis by Nanoscale Gold, Silver, and Copper * Concepts in Self-Assembly * Nanocomposites * Amphiphilic Poly(Oxyalkylene)-Amines * Mesoporous Alumina * Nanoceramics for Medical Applications * Ecological Toxicology of Engineered Carbon Nanoparticles * Molecular Imprinting * Near-Field Raman Imaging of Nanostructures and Devices * Fullerene-Rich Nanostructures * Interactions of Carbon Nanotubes with Biomolecules * Nanoparticle-Cored Dendrimers and Hyperbranched Polymers * Nanostructured Organogels via Molecular Self-Assembly * Structural DNA Nanotechnology With its coverage of all such important areas as self-assembly, polymeric materials, bionanomaterials, nanotubes, photonic and environmental aspects, this is an essential reference for materials scientists, engineers, chemists, physicists and biologists wishing to gain an in-depth knowledge of all the disciplines involved.


Handbook of Carbon Nanotubes

Handbook of Carbon Nanotubes

Author: Jiji Abraham

Publisher: Springer Nature

Published: 2022-11-16

Total Pages: 2099

ISBN-13: 3030913465

DOWNLOAD EBOOK

This Handbook covers the fundamentals of carbon nanotubes (CNT), their composites with different polymeric materials (both natural and synthetic) and their potential advanced applications. Three different parts dedicated to each of these aspects are provided, with chapters written by worldwide experts in the field. It provides in-depth information about this material serving as a reference book for a broad range of scientists, industrial practitioners, graduate and undergraduate students, and other professionals in the fields of polymer science and engineering, materials science, surface science, bioengineering and chemical engineering. Part 1 comprises 22 chapters covering early stages of the development of CNT, synthesis techniques, growth mechanism, the physics and chemistry of CNT, various innovative characterization techniques, the need of functionalization and different types of functionalization methods as well as the different properties of CNT. A full chapter is devoted to theory and simulation aspects. Moreover, it pursues a significant amount of work on life cycle analysis of CNT and toxicity aspects. Part 2 covers CNT-based polymer nanocomposites in approximately 23 chapters. It starts with a short introduction about polymer nanocomposites with special emphasis on CNT-based polymer nanocomposites, different manufacturing techniques as well as critical issues concerning CNT-based polymer nanocomposites. The text deeply reviews various classes of polymers like thermoset, elastomer, latex, amorphous thermoplastic, crystalline thermoplastic and polymer fibers used to prepare CNT based polymer composites. It provides detailed awareness about the characterization of polymer composites. The morphological, rheological, mechanical, viscoelastic, thermal, electrical, electromagnetic shielding properties are discussed in detail. A chapter dedicated to the simulation and multiscale modelling of polymer nanocomposites is an additional attraction of this part of the Handbook. Part 3 covers various potential applications of CNT in approximately 27 chapters. It focuses on individual applications of CNT including mechanical applications, energy conversion and storage applications, fuel cells and water splitting, solar cells and photovoltaics, sensing applications, nanofluidics, nanoelectronics and microelectronic devices, nano-optics, nanophotonics and nano-optoelectronics, non-linear optical applications, piezo electric applications, agriculture applications, biomedical applications, thermal materials, environmental remediation applications, anti-microbial and antibacterial properties and other miscellaneous applications and multi-functional applications of CNT based polymer nanocomposites. One chapter is fully focussed on carbon nanotube research developments: published papers and patents. Risks associated with carbon nanotubes and competitive analysis of carbon nanotubes with other carbon allotropes are also addressed in this Handbook.


Dispersion of Single-wall Carbon Nanotubes and Their Solubility Parameters

Dispersion of Single-wall Carbon Nanotubes and Their Solubility Parameters

Author: Uwagbae Eghobamien

Publisher:

Published: 2010

Total Pages: 254

ISBN-13:

DOWNLOAD EBOOK

"This research work studied the dispersion of SWCNTs in various solvents, such as isoprpyl alcohol extra pure (IPA), N,N-dimethylformamide (DMF), chloroform stabilized, methanol, reagent alcohol (RA), water acetone, and 1,1,1-trichloroethane (TCA), with strong ang mild ultrasonication agitation." -- (vi)


Carbon Allotropes: Metal-Complex Chemistry, Properties and Applications

Carbon Allotropes: Metal-Complex Chemistry, Properties and Applications

Author: Boris Ildusovich Kharisov

Publisher: Springer

Published: 2019-01-02

Total Pages: 790

ISBN-13: 3030035050

DOWNLOAD EBOOK

This book provides a detailed description of metal-complex functionalized carbon allotrope forms, including classic (such as graphite), rare (such as M- or T-carbon), and nanoforms (such as carbon nanotubes, nanodiamonds, etc.). Filling a void in the nanotechnology literature, the book presents chapters generalizing the synthesis, structure, properties, and applications of all known carbon allotropes. Metal-complex composites of carbons are described, along with several examples of their preparation and characterization, soluble metal-complex carbon composites, cost-benefit data, metal complexes as precursors of carbon allotropes, and applications. A lab manual on the synthesis and characterization of carbon allotropes and their metal-complex composites is included. Provides a complete description of all carbon allotropes, both classic and rare, as well as carbon nanostructures and their metal-complex composites; Contains a laboratory manual of experiments on the synthesis and characterization of metal-complex carbon composites; Discusses applications in diverse fields, such as catalysis on supporting materials, water treatment, sensors, drug delivery, and devices.


Dispersion of Single-Walled Carbon Nanotubes in Organic Solvents

Dispersion of Single-Walled Carbon Nanotubes in Organic Solvents

Author:

Publisher:

Published: 2003

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

This thesis contains a systematic study of the dispersion of pristine HiPco Single Walled Carbon Nanotubes (SWNTs) in a series of organic solvents. A double beamed UV-Vis-NIR absorption spectrometer coupled with an integrating sphere was employed to demonstrate the dispersibility of SWNTs in different solvents. Raman Spectroscopy and Atomic Force Microscopy (AFM) were used to confirm the debundling and exfoliation of SWNTs aggregates. An investigation of the solubility of SWNTs in four chlorinated aromatic solvents demonstrated that the similarity in structure between solvent molecules and nanotube sidewall is not a dominant factor to obtain stable SWNT solutions. A comparative study of the solubility of SWNTs between the aromatic solvents and other reported solvents was then conducted, in terms of the solvent solubility parameters, including Hildebrand and Hansen solubility parameters. Although the established correlation between extinction/absorption coefficients as a function of Hildebrand/Hansen solubility parameters indicated there may be a selective debundling of metallic and semiconducting SWNTs in different solvents, this was not confirmed by a detailed Raman investigation. A further study of the dispersion limit of SWNTs in different solvents as a function of the solvent solubility parameters was carried out. Good agreement with literature is demonstrated here in terms of Hildebrand parameters, but not in terms of the Hansen solubility parameters. It has been demonstrated that the degree of dispersion is critically dependent on sample preparation conditions, in particular sonication. Finally, the effect of sonication parameters and solvent properties during the dispersion of SWNTs was investigated. The results indicated that the sonication process is closely dependent on many of the physical parameters of the solvent, including vapour pressure, viscosity, surface tension, density and molecular weight. Longer sonication time and higher sonication power help.


Carbon Nanotube-Polymer Composites

Carbon Nanotube-Polymer Composites

Author: Dimitrios Tasis

Publisher: Royal Society of Chemistry

Published: 2015-11-09

Total Pages: 293

ISBN-13: 1782625828

DOWNLOAD EBOOK

Chemically-modified carbon nanotubes (CNTs) exhibit a wide range of physical and chemical properties which makes them an attractive starting material for the preparation of super-strong and highly-conductive fibres and films. Much information is available across the primary literature, making it difficult to obtain an overall picture of the state-of-the-art. This volume brings together some of the leading researchers in the field from across the globe to present the potential these materials have, not only in developing and characterising novel materials but also the devices which can be fabricated from them. Topics featured in the book include Raman characterisation, industrial polymer materials, actuators and sensors and polymer reinforcement, with chapters prepared by highly-cited authors from across the globe. A valuable handbook for any academic or industrial laboratory, this book will appeal to newcomers to the field and established researchers alike.