Solid Geometry with Problems and Applications (Revised Edition)
Author: Nels Johann Lennes
Publisher:
Published: 2009
Total Pages:
ISBN-13:
DOWNLOAD EBOOKRead and Download eBook Full
Author: Nels Johann Lennes
Publisher:
Published: 2009
Total Pages:
ISBN-13:
DOWNLOAD EBOOKAuthor: Herbert Ellsworth Slaught
Publisher:
Published: 1919
Total Pages: 240
ISBN-13:
DOWNLOAD EBOOKAuthor: I.F. Sharygin
Publisher: Imported Publication
Published: 1988
Total Pages: 408
ISBN-13: 9785030001807
DOWNLOAD EBOOKAuthor:
Publisher:
Published: 1920
Total Pages: 522
ISBN-13:
DOWNLOAD EBOOKIncludes section "Recent publications."
Author:
Publisher:
Published: 1904
Total Pages: 560
ISBN-13:
DOWNLOAD EBOOKAuthor: Andreĭ Petrovich Kiselev
Publisher:
Published: 2008
Total Pages: 192
ISBN-13:
DOWNLOAD EBOOKThis volume completes the English adaptation of a classical Russian textbook in elementary Euclidean geometry. The 1st volume subtitled "Book I. Planimetry" was published in 2006 (ISBN 0977985202). This 2nd volume (Book II. Stereometry) covers solid geometry, and contains a chapter on vectors, foundations, and introduction in non-Euclidean geometry added by the translator. The book intended for high-school and college students, and their teachers. Includes 317 exercises, index, and bibliography.
Author: Clara Avis Hart
Publisher:
Published: 1912
Total Pages: 504
ISBN-13:
DOWNLOAD EBOOKAuthor: Claudi Alsina
Publisher: American Mathematical Soc.
Published: 2015-12-31
Total Pages: 289
ISBN-13: 1614442169
DOWNLOAD EBOOKSolid geometry is the traditional name for what we call today the geometry of three-dimensional Euclidean space. This book presents techniques for proving a variety of geometric results in three dimensions. Special attention is given to prisms, pyramids, platonic solids, cones, cylinders and spheres, as well as many new and classical results. A chapter is devoted to each of the following basic techniques for exploring space and proving theorems: enumeration, representation, dissection, plane sections, intersection, iteration, motion, projection, and folding and unfolding. The book includes a selection of Challenges for each chapter with solutions, references and a complete index. The text is aimed at secondary school and college and university teachers as an introduction to solid geometry, as a supplement in problem solving sessions, as enrichment material in a course on proofs and mathematical reasoning, or in a mathematics course for liberal arts students.--
Author: Jean Gallier
Publisher: Springer Science & Business Media
Published: 2012-12-06
Total Pages: 584
ISBN-13: 1461301378
DOWNLOAD EBOOKAs an introduction to fundamental geometric concepts and tools needed for solving problems of a geometric nature using a computer, this book fills the gap between standard geometry books, which are primarily theoretical, and applied books on computer graphics, computer vision, or robotics that do not cover the underlying geometric concepts in detail. Gallier offers an introduction to affine, projective, computational, and Euclidean geometry, basics of differential geometry and Lie groups, and explores many of the practical applications of geometry. Some of these include computer vision, efficient communication, error correcting codes, cryptography, motion interpolation, and robot kinematics. This comprehensive text covers most of the geometric background needed for conducting research in computer graphics, geometric modeling, computer vision, and robotics and as such will be of interest to a wide audience including computer scientists, mathematicians, and engineers.
Author: Patrick D Barry
Publisher: Woodhead Publishing
Published: 2015-12-24
Total Pages: 282
ISBN-13: 0128050675
DOWNLOAD EBOOKGeometry with Trigonometry Second Edition is a second course in plane Euclidean geometry, second in the sense that many of its basic concepts will have been dealt with at school, less precisely. It gets underway with a large section of pure geometry in Chapters 2 to 5 inclusive, in which many familiar results are efficiently proved, although the logical frame work is not traditional. In Chapter 6 there is a convenient introduction of coordinate geometry in which the only use of angles is to handle the perpendicularity or parallelism of lines. Cartesian equations and parametric equations of a line are developed and there are several applications. In Chapter 7 basic properties of circles are developed, the mid-line of an angle-support, and sensed distances. In the short Chaper 8 there is a treatment of translations, axial symmetries and more generally isometries. In Chapter 9 trigonometry is dealt with in an original way which e.g. allows concepts such as clockwise and anticlockwise to be handled in a way which is not purely visual. By the stage of Chapter 9 we have a context in which calculus can be developed. In Chapter 10 the use of complex numbers as coordinates is introduced and the great conveniences this notation allows are systematically exploited. Many and varied topics are dealt with , including sensed angles, sensed area of a triangle, angles between lines as opposed to angles between co-initial half-lines (duo-angles). In Chapter 11 various convenient methods of proving geometrical results are established, position vectors, areal coordinates, an original concept mobile coordinates. In Chapter 12 trigonometric functions in the context of calculus are treated. New to this edition: - The second edition has been comprehensively revised over three years - Errors have been corrected and some proofs marginally improved - The substantial difference is that Chapter 11 has been significantly extended, particularly the role of mobile coordinates, and a more thorough account of the material is given - Provides a modern and coherent exposition of geometry with trigonometry for many audiences across mathematics - Provides many geometric diagrams for a clear understanding of the text and includes problem exercises for many chapters - Generalizations of this material, such as to solid euclidean geometry and conic sections, when combined with calculus, would lead to applications in science, engineering, and elsewhere