Introduction Advanced Surface Mount Technology and Die Attach Techniques Solder Material Soldering Chemistry Solderability Microstructure of Solders Aqueous-Cleaning Manufacture No-Clean Manufacture Protective and Reactive Atmosphere Soldering Surface Mount Fine Pitch Technology Surface Mount-BGA/PAC Technology Soldering Methodology and Equipment Soldering and Soldering Related Issues Strengthened Solders Lead-Free Solders Solder Joint Failure Mode Solder Joint Failure Assessment-Case Studies Solder Joint Quality and Reliability New and Emerging Specifications and Standards Future Trends.
Covers various soldering methods and techniques as well as the latest on solder alloys, solder films, surface preparation, fluxes and cleaning methods, heating methods, inspection techniques, and quality control and reliability. Geared to scientists, material engineers, designers, manufacturing engineers, and technologists who need immediate practical guidance rather than theoretical instruction.
Managers, engineers and technicians will use this book during industrial construction of electronics assemblies, whilst students can use the book to get a grasp of the variety of methods available, together with a discussion of technical concerns. It includes over 200 illustrations, including a photographic guide to defects, and contains many line drawings, tables and flow charts to illustrate the subject of electronics assembly. Soldering in Electronics Assembly looks theoretically at everything needed in a detailed study, but in a practical manner. It examines the soldering processes in the light of electronic assembly type; solder; flux; and cleaning requirements. It has information on every available process, from the most basic hand soldering through to latest innovatory ones such as inert atmosphere wave soldering and zoned forced convection infra-red machines. The book provides a detailed analysis of solder and soldering action; purpose of flux and relevant flux types for any application; classification of assembly variants; assessment and maintenance of solderability. There is also a detailed analysis of soldering process defects and causes. In addition, Soldering in Electronics Assembly contains a new chapter on Ball Grid Array (BGA) technology. - A practical guide for the industry covering all the main soldering processes currently in use - Cleaning, faults, troubleshooting and standards are all major topics - Considers safety and solder process quality assessment
Focused on technological innovations in the field of electronics packaging and production, this book elucidates the changes in reflow soldering processes, its impact on defect mechanisms, and, accordingly, the troubleshooting techniques during these processes in a variety of board types. Geared toward electronics manufacturing process engineers, design engineers, as well as students in process engineering classes, Reflow Soldering Processes and Troubleshooting will be a strong contender in the continuing skill development market for manufacturing personnel. Written using a very practical, hands-on approach, Reflow Soldering Processes and Troubleshooting provides the means for engineers to increase their understanding of the principles of soldering, flux, and solder paste technology. The author facilitates learning about other essential topics, such as area array packages--including BGA, CSP, and FC designs, bumping technique, assembly, and rework process,--and provides an increased understanding of the reliability failure modes of soldered SMT components. With cost effectiveness foremost in mind, this book is designed to troubleshoot errors or problems before boards go into the manufacturing process, saving time and money on the front end. The author's vast expertise and knowledge ensure that coverage of topics is expertly researched, written, and organized to best meet the needs of manufacturing process engineers, students, practitioners, and anyone with a desire to learn more about reflow soldering processes. Comprehensive and indispensable, this book will prove a perfect training and reference tool that readers will find invaluable. Provides engineers the cutting-edge technology in a rapidly changing field Offers in-depth coverage of the principles of soldering, flux, solder paste technology, area array packages--including BGA, CSP, and FC designs, bumping technique, assembly, and the rework process
Get the latest developments in solder technology You can't work in electronics without solder -- and you shouldn't work with solder without Solders and Soldering, Fourth Edition. Profusely illustrated, this book by the world's top solder educator has been the leader in its field for two decades. You'll learn 29 different methods for soldering and heating (for both automatic and manual procedures), and learn about the strengths and weaknesses of each method for varying applications. This up-to-date edition deals at length with modern cleaning materials and processes, emphasizing EPA and OSHA guidelines and regulations, and provides you with state-of-the-art techniques for soldering with miniaturized circuit boards.
Solders have given the designer of modern consumer, commercial, and military electronic systems a remarkable flexibility to interconnect electronic components. The properties of solder have facilitated broad assembly choices that have fueled creative applications to advance technology. Solder is the electrical and me chanical "glue" of electronic assemblies. This pervasive dependency on solder has stimulated new interest in applica tions as well as a more concerted effort to better understand materials properties. We need not look far to see solder being used to interconnect ever finer geo metries. Assembly of micropassive discrete devices that are hardly visible to the unaided eye, of silicon chips directly to ceramic and plastic substrates, and of very fine peripheral leaded packages constitute a few of solder's uses. There has been a marked increase in university research related to solder. New electronic packaging centers stimulate applications, and materials engineering and science departments have demonstrated a new vigor to improve both the materials and our understanding of them. Industrial research and development continues to stimulate new application, and refreshing new packaging ideas are emerging. New handbooks have been published to help both the neophyte and seasoned packaging engineer.
This reference provides a complete discussion of the conversion from standard lead-tin to lead-free solder microelectronic assemblies for low-end and high-end applications. Written by more than 45 world-class researchers and practitioners, the book discusses general reliability issues concerning microelectronic assemblies, as well as factors specif
One of the strongest trends in the design and manufacture of modern electronics packages and assemblies is the utilization of surface mount technology as a replacement for through-hole tech nology. The mounting of electronic devices and components onto the surface of a printed wiring board or other substrate offers many advantages over inserting the leads of devices or components into holes. From the engineering viewpoint, much higher lead counts with shorter wire and interconnection lengths can be accommo dated. This is critical in high performance modern electronics packaging. From the manufacturing viewpoint, the application of automated assembly and robotics is much more adaptable to high lead count surface mounted devices and components. Indeed, the insertion of high lead count parts into fine holes on a substrate might often be nearly impossible. Yet, in spite of these surface mounting advantages, the utilization of surface mount technology is often a problem, primarily due to soldering problems. The most practical soldering methods use solder pastes, whose intricacies are frequently not understood by most of those involved in the engineering and manufacture of electronics assemblies. This publication is the first book devoted exclusively to explanations of the broad combination of the chemical, metallurgical, and rheological principles that are critical to the successful use of solder pastes. The critical relation ships between these characteristics are clearly explained and pre sented. In this excellent presentation, Dr. Hwang highlights three impor tant areas of solder paste technology.
Surface Mount Technology has had a profound influence on the electronics industry, and has led to the use of new materials, techniques and manufacturing processes. Since the first edition of this book was written, electronic assemblies have continued to become still smaller and more complex, while soldering still remains the dominant connecting technique. This is a comprehensive guide to current methods of soldering components to their substrates, written by one of the founding fathers of the technology. It also covers component placement, the post-CFC technology of cleaning after soldering, and the principles and methods of quality control and rework. New sections deal with Ball-Grid-Array (BGA) technology, lead-free solders, no-clean fluxes, and the current standard specifications for solders and fluxes. Dr Rudolf Strauss has spent most of his working life with a leading manufacturer of solders and fluxes. He was responsible for a number of innovations including the concept of wave soldering, and for many years has been active as lecturer, consultant, and technical author. His book explains the principles of soldering and surface mount technology in practical terms and plain language, free from jargon. It is addressed to the man, or woman, who has to do the job, but it will also be of help in planning manufacturing strategy and in making purchasing decisions relating to consumables and equipment. - Written by founding father of SMT technology - Standard specifications have been fully updated - New chapter covering Ball Grid Array (BGA) technology