Solar Cells Based on Colloidal Nanocrystals

Solar Cells Based on Colloidal Nanocrystals

Author: Holger Borchert

Publisher: Springer Science & Business Media

Published: 2014-04-01

Total Pages: 236

ISBN-13: 3319043889

DOWNLOAD EBOOK

This book presents a new system of solar cells. Colloidal nanocrystals possess many physical and chemical properties which can be manipulated by advanced control over structural features like the particle size. One application field is photovoltaics where colloidal semiconductor nanocrystals are explored as components of photo-active layers which can be produced from liquid media, often in combination with conductive polymers. The further development of this interdisciplinary field of research requires a deep understanding of the physics and chemistry of colloidal nanocrystals, conducting polymers and photovoltaic devices. This book aims at bridging gaps between the involved scientific disciplines and presents important fundamentals and the current state of research of relevant materials and different types of nanoparticle-based solar cells. The book will be of interest to researchers and PhD students. Moreover, it may also serve to accompany specialized lectures in related areas.


Colloidal Metal Oxide Nanoparticles

Colloidal Metal Oxide Nanoparticles

Author:

Publisher: Elsevier

Published: 2019-10-16

Total Pages: 612

ISBN-13: 0128133589

DOWNLOAD EBOOK

Colloidal Metal Oxide Nanoparticles: Synthesis, Characterization and Applications is a one-stop reference for anyone with an interest in the fundamentals, synthesis and applications of this interesting materials system. The book presents a simple, effective and detailed discussion on colloidal metal oxide nanoparticles. It begins with a general introduction of colloidal metal oxide nanoparticles, then delves into the most relevant synthesis pathways, stabilization procedures, and synthesis and characterization techniques. Final sections discuss promising applications, including bioimaging, biosensing, diagnostic, and energy applications—i.e., solar cells, supercapacitors and environment applications—i.e., the treatment of contaminated soil, water purification and waste remediation. - Provides the most comprehensive resource on the topic, from fundamentals, to synthesis and characterization techniques - Presents key applications, including biomedical, energy, electronic and environmental - Discusses the most relevant techniques for synthesis, patterning and characterization


Physics of Solar Cells

Physics of Solar Cells

Author: Peter Würfel

Publisher: John Wiley & Sons

Published: 2016-06-13

Total Pages: 288

ISBN-13: 352741309X

DOWNLOAD EBOOK

The new edition of this highly regarded textbook provides a detailed overview of the most important characterization techniques for solar cells and a discussion of their advantages and disadvantages. It describes in detail all aspects of solar cell function, the physics behind every single step, as well as all the issues to be considered when improving solar cells and their efficiency. The text is now complete with examples of how the appropriate characterization techniques enable the distinction between several potential limitation factors, describing how quantities that have been introduced theoretically in earlier chapters become experimentally accessible. With exercises after each chapter to reinforce the newly acquired knowledge and requiring no more than standard physics knowledge, this book enables students and professionals to understand the factors driving conversion efficiency and to apply this to their own solar cell development.


Nanostructured Materials for Type III Photovoltaics

Nanostructured Materials for Type III Photovoltaics

Author: Peter Skabara

Publisher: Royal Society of Chemistry

Published: 2017-11-08

Total Pages: 532

ISBN-13: 178801250X

DOWNLOAD EBOOK

Materials for type III solar cells have branched into a series of generic groups. These include organic ‘small molecule’ and polymer conjugated structures, fullerenes, quantum dots, copper indium gallium selenide nanocrystal films, dyes/TiO2 for Grätzel cells, hybrid organic/inorganic composites and perovskites. Whilst the power conversion efficiencies of organic solar cells are modest compared to other type III photovoltaic materials, plastic semiconductors provide a cheap route to manufacture through solution processing and offer flexible devices. However, other types of materials are proving to be compatible with this type of processing whilst providing higher device efficiencies. As a result, the field is experiencing healthy competition between technologies that is pushing progress at a fast rate. In particular, perovskite solar cells have emerged very recently as a highly disruptive technology with power conversion efficiencies now over 20%. Perovskite cells, however, still have to address stability and environmental issues. With such a diverse range of materials, it is timely to capture the different technologies into a single volume of work. This book will give a collective insight into the different roles that nanostructured materials play in type III solar cells. This will be an essential text for those working with any of the devices highlighted above, providing a fundamental understanding and appreciation of the potential and challenges associated with each of these technologies.


Plasmonic Organic Solar Cells

Plasmonic Organic Solar Cells

Author: Bo Wu

Publisher: Springer

Published: 2016-10-04

Total Pages: 114

ISBN-13: 9811020213

DOWNLOAD EBOOK

This book explores the incorporation of plasmonic nanostructures into organic solar cells, which offers an attractive light trapping and absorption approach to enhance power conversion efficiencies. The authors review the latest advances in the field and discuss the characterization of these hybrid devices using a combination of optical and electrical probes. Transient optical spectroscopies such as transient absorption and transient photoluminescence spectroscopy offer powerful tools for observing charge carrier dynamics in plasmonic organic solar cells. In conjunction with device electrical characterizations, they provide unambiguous proof of the effect of the plasmonic nanostructures on the solar cells’ performance. However, there have been a number of controversies over the effects of such integration – where both enhanced and decreased performance have been reported. Importantly, the new insights into the photophysics and charge dynamics of plasmonic organic solar cells that these spectroscopy methods yield could be used to resolve these controversies and provide clear guidelines for device design and fabrication.


Copper Zinc Tin Sulfide-Based Thin-Film Solar Cells

Copper Zinc Tin Sulfide-Based Thin-Film Solar Cells

Author: Kentaro Ito

Publisher: John Wiley & Sons

Published: 2015-02-23

Total Pages: 449

ISBN-13: 111843787X

DOWNLOAD EBOOK

Beginning with an overview and historical background of Copper Zinc Tin Sulphide (CZTS) technology, subsequent chapters cover properties of CZTS thin films, different preparation methods of CZTS thin films, a comparative study of CZTS and CIGS solar cell, computational approach, and future applications of CZTS thin film solar modules to both ground-mount and rooftop installation. The semiconducting compound (CZTS) is made up earth-abundant, low-cost and non-toxic elements, which make it an ideal candidate to replace Cu(In,Ga)Se2 (CIGS) and CdTe solar cells which face material scarcity and toxicity issues. The device performance of CZTS-based thin film solar cells has been steadily improving over the past 20 years, and they have now reached near commercial efficiency levels (10%). These achievements prove that CZTS-based solar cells have the potential to be used for large-scale deployment of photovoltaics. With contributions from leading researchers from academia and industry, many of these authors have contributed to the improvement of its efficiency, and have rich experience in preparing a variety of semiconducting thin films for solar cells.


Photovoltaic Solar Energy

Photovoltaic Solar Energy

Author: Wilfried van Sark

Publisher: John Wiley & Sons

Published: 2024-07-29

Total Pages: 645

ISBN-13: 1119578817

DOWNLOAD EBOOK

Photovoltaic Solar Energy Thoroughly updated overview of photovoltaic technology, from materials to modules and systems Volume 2 of Photovoltaic Solar Energy provides fundamental and contemporary knowledge about various photovoltaic technologies in the framework of material science, device physics of solar cells, chemistry for manufacturing, engineering of PV modules, and the design aspects of photovoltaic applications, with the aim of informing the reader about the basic knowledge of each aspect of photovoltaic technologies and applications in the context of the most recent advances in science and engineering. The text is written by leading specialists for each topic in a concise manner and includes the most recent references for deeper study. Moreover, the book gives insights into possible future developments in the field of photovoltaics. The book builds on the success of Volume 1 of Photovoltaic Solar Energy, which was published by Wiley in January 2017. As science and technology is progressing fast in some areas of photovoltaics, several topics needed to be readdressed. Volume 2 also covers some basic aspects of the subject that were not addressed in Volume 1. Sample topics covered in Photovoltaic Solar Energy include: Solar Irradiance Resources Crystalline Silicon Technologies (Cz Ingots, TOPCon, Heterojunction, Passivating contacts, Hydrogenation and Carrier Induced Degradation) Perovskite and Tandem solar cells Characterization and Measurements PV Modules PV Systems and Applications (integration in buildings, agriculture, water, vehicles) Sustainability Providing comprehensive coverage of the subject, Photovoltaic Solar Energy is an essential resource for undergraduate and graduate students in science or engineering, young professionals in PV research or the PV industry, professors, teachers, and PV specialists who want to receive updated information. A scientific or engineering degree is a prerequisite.


Organic and Hybrid Solar Cells

Organic and Hybrid Solar Cells

Author: Hui Huang

Publisher: Springer

Published: 2014-11-25

Total Pages: 342

ISBN-13: 3319108557

DOWNLOAD EBOOK

This book delivers a comprehensive evaluation of organic and hybrid solar cells and identifies their fundamental principles and numerous applications. Great attention is given to the charge transport mechanism, donor and acceptor materials, interfacial materials, alternative electrodes, device engineering and physics, and device stability. The authors provide an industrial perspective on the future of photovoltaic technologies.


Printable Solar Cells

Printable Solar Cells

Author: Nurdan Demirci Sankir

Publisher: John Wiley & Sons

Published: 2017-05-01

Total Pages: 578

ISBN-13: 111928371X

DOWNLOAD EBOOK

Printable Solar Cells The book brings together the recent advances, new and cutting edge materials from solution process and manufacturing techniques that are the key to making photovoltaic devices more efficient and inexpensive. Printable Solar Cells provides an overall view of the new and highly promising materials and thin film deposition techniques for printable solar cell applications. The book is organized in four parts. Organic and inorganic hybrid materials and solar cell manufacturing techniques are covered in Part I. Part II is devoted to organic materials and processing technologies like spray coating. This part also demonstrates the key features of the interface engineering for the printable organic solar cells. The main focus of Part III is the perovskite solar cells, which is a new and promising family of the photovoltaic applications. Finally, inorganic materials and solution based thin film formation methods using these materials for printable solar cell application is discussed in Part IV. Audience The book will be of interest to a multidisciplinary group of fields, in industry and academia, including physics, chemistry, materials science, biochemical engineering, optoelectronic information, photovoltaic and renewable energy engineering, electrical engineering, mechanical and manufacturing engineering.