This book is a tribute to Lotfi A. Zadeh, the father of fuzzy logic, on the occasion of his 90th Birthday. The book gathers original scientific contributions written by top scientists and presenting the latest theories, applications and new trends in the fascinating and challenging field of soft computing.
The book provides a sample of research on the innovative theory and applications of soft computing paradigms. The idea of Soft Computing was initiated in 1981 when Professor Zadeh published his first paper on soft data analysis and constantly evolved ever since. Professor Zadeh defined Soft Computing as the fusion of the fields of fuzzy logic (FL), neural network theory (NN) and probabilistic reasoning (PR), with the latter subsuming belief networks, evolutionary computing including DNA computing, chaos theory and parts of learning theory into one multidisciplinary system. As Zadeh said the essence of soft computing is that unlike the traditional, hard computing, soft computing is aimed at an accommodation with the pervasive imprecision of the real world. Thus, the guiding principle of soft computing is to exploit the tolerance for imprecision, uncertainty and partial truth to achieve tractability, robustness, low solution cost and better rapport with reality. In the final analysis, the role model for soft computing is the human mind. We hope that the reader will share our excitement and find our volume both useful and inspiring.
Traditional artificial intelligence (AI) techniques are based around mathematical techniques of symbolic logic, with programming in languages such as Prolog and LISP invented in the 1960s. These are referred to as "crisp" techniques by the soft computing community. The new wave of AI methods seeks inspiration from the world of biology, and is being used to create numerous real-world intelligent systems with the aid of soft computing tools. These new methods are being increasingly taught at the upper end of the curriculum, sometimes as an adjunct to traditional AI courses, and sometimes as a replacement for them. Where a more radical approach is taken and the course is being taught at an introductory level, we have recently published Negnevitsky's book. Karray and Silva will be suitable for the majority of courses which will be found at an advanced level. Karray and de Silva cover the problem of control and intelligent systems design using soft-computing techniques in an integrated manner. They present both theory and applications, including industrial applications, and the book contains numerous worked examples, problems and case studies. Covering the state-of-the-art in soft-computing techniques, the book gives the reader sufficient knowledge to tackle a wide range of complex systems for which traditional techniques are inadequate.
An in-depth look at soft computing methods and their applications in the human sciences, such as the social and the behavioral sciences. Soft computing methods - including fuzzy systems, neural networks, evolutionary computing and probabilistic reasoning - are state-of-the-art methods in theory formation and model construction. The powerful application areas of these methods in the human sciences are demonstrated, including the replacement of statistical models by simpler numerical or linguistic soft computing models and the use of computer simulations with approximate and linguistic constituents. "Dr. Niskanen's work opens new vistas in application of soft computing, fuzzy logic and fuzzy set theory to the human sciences. This book is likely to be viewed in retrospect as a landmark in its field" (Lotfi A. Zadeh, Berkeley)
The concept of soft computing is still in its initial stages of crystallization. Presently available books on soft computing are merely collections of chapters or articles about different aspects of the field. This book is the first to provide a systematic account of the major concepts and methodologies of soft computing, presenting a unified framework that makes the subject more accessible to students and practitioners. Particularly worthy of note is the inclusion of a wealth of information about neuro-fuzzy, neuro-genetic, fuzzy-genetic and neuro-fuzzy-genetic systems, with many illuminating applications and examples.
This textbook provides a clear and logical introduction to the field, covering the fundamental concepts, algorithms and practical implementations behind efforts to develop systems that exhibit intelligent behavior in complex environments. This enhanced second edition has been fully revised and expanded with new content on swarm intelligence, deep learning, fuzzy data analysis, and discrete decision graphs. Features: provides supplementary material at an associated website; contains numerous classroom-tested examples and definitions throughout the text; presents useful insights into all that is necessary for the successful application of computational intelligence methods; explains the theoretical background underpinning proposed solutions to common problems; discusses in great detail the classical areas of artificial neural networks, fuzzy systems and evolutionary algorithms; reviews the latest developments in the field, covering such topics as ant colony optimization and probabilistic graphical models.
The Springer Handbook for Computational Intelligence is the first book covering the basics, the state-of-the-art and important applications of the dynamic and rapidly expanding discipline of computational intelligence. This comprehensive handbook makes readers familiar with a broad spectrum of approaches to solve various problems in science and technology. Possible approaches include, for example, those being inspired by biology, living organisms and animate systems. Content is organized in seven parts: foundations; fuzzy logic; rough sets; evolutionary computation; neural networks; swarm intelligence and hybrid computational intelligence systems. Each Part is supervised by its own Part Editor(s) so that high-quality content as well as completeness are assured.
This book constitutes the refereed proceedings of the 12th International Conference on Scalable Uncertainty Management, SUM 2018, which was held in Milan, Italy, in October 2018. The 23 full, 6 short papers and 2 tutorials presented in this volume were carefully reviewed and selected from 37 submissions. The conference is dedicated to the management of large amounts of complex, uncertain, incomplete, or inconsistent information. New approaches have been developed on imprecise probabilities, fuzzy set theory, rough set theory, ordinal uncertainty representations, or even purely qualitative models.
This volume collects a selection of contributions which has been presented at the 23rd Italian Workshop on Neural Networks, the yearly meeting of the Italian Society for Neural Networks (SIREN). The conference was held in Vietri sul Mare, Salerno, Italy during May 23-24, 2013. The annual meeting of SIREN is sponsored by International Neural Network Society (INNS), European Neural Network Society (ENNS) and IEEE Computational Intelligence Society (CIS). The book – as well as the workshop- is organized in two main components, a special session and a group of regular sessions featuring different aspects and point of views of artificial neural networks, artificial and natural intelligence, as well as psychological and cognitive theories for modeling human behaviors and human machine interactions, including Information Communication applications of compelling interest.
"This book explores emerging technologies and best practices designed to effectively address concerns inherent in properly optimizing advanced systems, demonstrating applications in areas such as bio-engineering, space exploration, industrial informatics, information security, and nuclear and renewable energies"--Provided by publisher.