Quantitative Social Science Data with R

Quantitative Social Science Data with R

Author: Brian J. Fogarty

Publisher: SAGE Publications Limited

Published: 2023-03-11

Total Pages: 566

ISBN-13: 1529614228

DOWNLOAD EBOOK

Relevant, engaging, and packed with student-focused learning features, this book provides the basic step-by-step introduction to quantitative research and data every student needs. Gradually introducing applied statistics and the language and functionality of R and R Studio software, it uses examples from across the social sciences to show students how to apply abstract statistical and methodological principles to their own work. Maintaining a student-friendly pace, it goes beyond a normal introductory statistics book and shows students where data originates and how to: - Understand and use quantitative data to answer questions - Approach surrounding ethical issues - Collect quantitative data - Manage, write about, and share the data effectively Supported by incredible digital resources with online tutorials, videos, datasets, and multiple choice questions, this book gives students not only the tools they need to understand statistics, quantitative data, and R software, but also the chance to practice and apply what they have learned.


Data Management for Social Scientists

Data Management for Social Scientists

Author: Nils B. Weidmann

Publisher: Cambridge University Press

Published: 2023-03-09

Total Pages: 243

ISBN-13: 1108845673

DOWNLOAD EBOOK

Equips social scientists with the tools and techniques to conduct quantitative research in the age of big data.


Using R for Data Analysis in Social Sciences

Using R for Data Analysis in Social Sciences

Author: Quan Li

Publisher: Oxford University Press

Published: 2018-05-09

Total Pages: 369

ISBN-13: 0190656239

DOWNLOAD EBOOK

Statistical analysis is common in the social sciences, and among the more popular programs is R. This book provides a foundation for undergraduate and graduate students in the social sciences on how to use R to manage, visualize, and analyze data. The focus is on how to address substantive questions with data analysis and replicate published findings. Using R for Data Analysis in Social Sciences adopts a minimalist approach and covers only the most important functions and skills in R to conduct reproducible research. It emphasizes the practical needs of students using R by showing how to import, inspect, and manage data, understand the logic of statistical inference, visualize data and findings via histograms, boxplots, scatterplots, and diagnostic plots, and analyze data using one-sample t-test, difference-of-means test, covariance, correlation, ordinary least squares (OLS) regression, and model assumption diagnostics. It also demonstrates how to replicate the findings in published journal articles and diagnose model assumption violations. Because the book integrates R programming, the logic and steps of statistical inference, and the process of empirical social scientific research in a highly accessible and structured fashion, it is appropriate for any introductory course on R, data analysis, and empirical social-scientific research.


Regression Analysis for the Social Sciences

Regression Analysis for the Social Sciences

Author: Rachel A. Gordon

Publisher: Routledge

Published: 2015-03-17

Total Pages: 567

ISBN-13: 1317607112

DOWNLOAD EBOOK

Provides graduate students in the social sciences with the basic skills they need to estimate, interpret, present, and publish basic regression models using contemporary standards. Key features of the book include: •interweaving the teaching of statistical concepts with examples developed for the course from publicly-available social science data or drawn from the literature. •thorough integration of teaching statistical theory with teaching data processing and analysis. •teaching of Stata and use of chapter exercises in which students practice programming and interpretation on the same data set. A separate set of exercises allows students to select a data set to apply the concepts learned in each chapter to a research question of interest to them, all updated for this edition.