The interaction and cross-fertilization of mathematics and physics is ubiquitous in the history of both disciplines. In particular, the recent developments of string theory have led to some relatively new areas of common interest among mathematicians and physicists, some of which are explored in the papers in this volume. These papers provide a reasonably comprehensive sampling of the potential for fruitful interaction between mathematicians and physicists that exists as a result of string theory.
This book contains exclusively invited contributions from collaborators of Maximilian Kreuzer, giving accounts of his scientific legacy and original articles from renowned theoretical physicists and mathematicians, including Victor Batyrev, Philip Candelas, Michael Douglas, Alexei Morozov, Joseph Polchinski, Peter van Nieuwenhuizen, and Peter West. Besides a collection of review and research articles from high-profile researchers in string theory and related fields of mathematics (in particular, algebraic geometry) which discuss recent progress in the exploration of string theory vacua and corresponding mathematical developments, this book contains a pedagogical account of the important work of Brandt, Dragon, and Kreuzer on classification of anomalies in gauge theories. This highly cited work, which is also quoted in the textbook of Steven Weinberg on quantum field theory, has not yet been presented in full detail except in private lecture notes by Norbert Dragon. Similarly, the software package PALP (Package for Analyzing Lattice Polytopes with applications to toric geometry), which has been incorporated in the SAGE (Software for Algebra and Geometry Experimentation) project, has not yet been documented in full detail. This book contains a user manual for a new thoroughly revised version of PALP. By including these two very useful original contributions, researchers in quantum field theory, string theory, and mathematics will find added value in a pedagogical presentation of the classification of quantum gauge field anomalies, and the accompanying comprehensive manual and tutorial for the powerful software package PALP.
This volume, based on lectures and short communications at a summer school in Villa de Leyva, Colombia (July 2005), offers an introduction to some recent developments in several active topics at the interface between geometry, topology and quantum field theory. It is aimed at graduate students in physics or mathematics who might want insight in the following topics (covered in five survey lectures): Anomalies and noncommutative geometry, Deformation quantisation and Poisson algebras, Topological quantum field theory and orbifolds. These lectures are followed by nine articles on various topics at the borderline of mathematics and physics ranging from quasicrystals to invariant instantons through black holes, and involving a number of mathematical tools borrowed from geometry, algebra and analysis.
This volume consists of a collection of papers that brings together fundamental research in Radon transforms, integral geometry, and tomography. It grew out of the Special Session at a Sectional Meeting of the American Mathematical Society in 2004. The book contains very recent work of some of the top researchers in the field. The articles in the book deal with the determination of properties of functions on a manifold by integral theoretic methods, or by determining the geometricstructure of subsets of a manifold by analytic methods. Of particular concern are ways of reconstructing an unknown function from some of its projections. Radon transforms were developed at the beginning of the twentieth century by researchers who were motivated by problems in differential geometry,mathematical physics, and partial differential equations. Later, medical applications of these transforms produced breakthroughs in imaging technology that resulted in the 1979 Nobel Prize in Physiology and Medicine for the development of computerized tomography. Today the subject boasts substantial cross-disciplinary interactions, both in pure and applied mathematics as well as medicine, engineering, biology, physics, geosciences, and industrial testing. Therefore, this volume should be ofinterest to a wide spectrum of researchers both in mathematics and in other fields.
Integral transforms, such as the Laplace and Fourier transforms, have been major tools in mathematics for at least two centuries. In the last three decades the development of a number of novel ideas in algebraic geometry, category theory, gauge theory, and string theory has been closely related to generalizations of integral transforms of a more geometric character. "Fourier–Mukai and Nahm Transforms in Geometry and Mathematical Physics" examines the algebro-geometric approach (Fourier–Mukai functors) as well as the differential-geometric constructions (Nahm). Also included is a considerable amount of material from existing literature which has not been systematically organized into a monograph. Key features: Basic constructions and definitions are presented in preliminary background chapters - Presentation explores applications and suggests several open questions - Extensive bibliography and index. This self-contained monograph provides an introduction to current research in geometry and mathematical physics and is intended for graduate students and researchers just entering this field.
"Over the past decade string theory has had an increasing impact on many areas of physics: high energy and hadronic physics, gravitation and cosmology, mathematical physics and even condensed matter physics. The impact has been through many major conceptual and methodological developments in quantum field theory in the past fifteen years. In addition, string theory has exerted a dramatic influence on developments in contemporary mathematics, including Gromov-Witten theory, mirror symmetry in complex and symplectic geometry, and important ramifications in enumerative geometry." "This volume is derived from a conference of younger leading practitioners around the common theme: "What is string theory?" The talks covered major current topics, both mathematical and physical, related to string theory. Graduate students and research mathematicians interested in string theory in mathematics and physics will be interested in this workshop."--BOOK JACKET.
The Ahlfors-Bers Colloquia commemorate the mathematical legacy of Lars Ahlfors and Lipman Bers. The core of this legacy lies in the fields of geometric function theory, Teichmuller theory, hyperbolic manifolds, and partial differential equations. However, the work of Ahlfors and Bers has impacted and created interactions with many other fields, such as algebraic geometry, mathematical physics, dynamics, geometric group theory, number theory, and topology. The triannual Ahlford-Bers colloquia serve as a venue to disseminate the relevant work to the wider mathematical community and bring the key participants together to ponder future directions in the field. The present volume includes a wide range of articles in the fields central to this legacy. The majority of articles present new results, but there are expository articles as well.
This book is a collection of original research papers and expository articles from the scientific program of the 2004-05 Emphasis Year on Stochastic Analysis and Partial Differential Equations at Northwestern University. Many well-known mathematicians attended the events and submitted their contributions for this volume. Topics from stochastic analysis discussed in this volume include stochastic analysis of turbulence, Markov processes, microscopic lattice dynamics, microscopic interacting particle systems, and stochastic analysis on manifolds. Topics from partial differential equations include kinetic equations, hyperbolic conservation laws, Navier-Stokes equations, and Hamilton-Jacobi equations. A variety of methods, such as numerical analysis, homogenization, measure-theoretical analysis, entropy analysis, weak convergence analysis, Fourier analysis, and Ito's calculus, are further developed and applied. All these topics are naturally interrelated and represent a cross-section of the most significant recent advances and current trends and directions in stochastic analysis and partial differential equations. This volume is suitable for researchers and graduate students interested in stochastic analysis, partial differential equations, and related analysis and applications.
The Fifth International Conference on Topological Algebras and Applications was held in Athens, Greece, from June 27th to July 1st of 2005. The main topic of the Conference was general theory of topological algebras and its various applications, with emphasis on the ``non-normed'' case. in addition to the study of the internal structure of non-normed, and even non-locally convex topological algebras, there are applications to other branches of mathematics, such as differential geometry of smooth manifolds, and mathematical physics, such as quantum relativity and quantum cosmology. Operator theory of unbounded operators and related non-normed topological algebras are intensively studied here. Other topics presented in this volume are topological homological algebra, topological algebraic geometry, sheaf theory and $K$-theory.
This volume is a collection of articles on orbifolds, algebraic curves with higher spin structures, and related invariants of Gromov-Witten type. Orbifold Gromov-Witten theory generalizes quantum cohomology for orbifolds, whereas spin cohomological field theory is based on the moduli spaces of higher spin curves and is related by Witten's conjecture to the Gelfand-Dickey integrable hierarchies. A common feature of these two very different looking theories is the central role played by orbicurves in both of them. Insights in one theory can often yield insights into the other. This book brings together for the first time papers related to both sides of this interaction. The articles in the collection cover diverse topics, such as geometry and topology of orbifolds, cohomological field theories, orbifold Gromov-Witten theory, $G$-Frobenius algebra and singularities, Frobenius manifolds and Givental's quantization formalism, moduli of higher spin curves and spin cohomological field theory.