This book focuses on smart materials and structures, which are also referred to as intelligent, adaptive, active, sensory, and metamorphic. The ultimate goal is to develop biologically inspired multifunctional materials with the capability to adapt their structural characteristics, monitor their health condition, perform self-diagnosis and self-repair, morph their shape, and undergo significant controlled motion.
Smart structures that contain embedded piezoelectric patches are loaded by both mechanical and electrical fields. Traditional plate and shell theories were developed to analyze structures subject to mechanical loads. However, these often fail when tasked with the evaluation of both electrical and mechanical fields and loads. In recent years more advanced models have been developed that overcome these limitations. Plates and Shells for Smart Structures offers a complete guide and reference to smart structures under both mechanical and electrical loads, starting with the basic principles and working right up to the most advanced models. It provides an overview of classical plate and shell theories for piezoelectric elasticity and demonstrates their limitations in static and dynamic analysis with a number of example problems. This book also provides both analytical and finite element solutions, thus enabling the reader to compare strong and weak solutions to the problems. Key features: compares a large variety of classical and modern approaches to plates and shells, such as Kirchhoff-Love , Reissner-Mindlin assumptions and higher order, layer-wise and mixed theories introduces theories able to consider electromechanical couplings as well as those that provide appropriate interface continuity conditions for both electrical and mechanical variables considers both static and dynamic analysis accompanied by a companion website hosting dedicated software MUL2 that is used to obtain the numerical solutions in the book, allowing the reader to reproduce the examples given as well as solve problems of their own The models currently used have a wide range of applications in civil, automotive, marine and aerospace engineering. Researchers of smart structures, and structural analysts in industry, will find all they need to know in this concise reference. Graduate and postgraduate students of mechanical, civil and aerospace engineering can also use this book in their studies. www.mul2.com
Concrete is the second most used building material in the world after water. The problem is that over time the material becomes weaker. As a response, researchers and designers are developing self-sensing concrete which not only increases longevity but also the strength of the material. Self-Sensing Concrete in Smart Structures provides researchers and designers with a guide to the composition, sensing mechanism, measurement, and sensing properties of self-healing concrete along with their structural applications - Provides a systematic discussion of the structure of intrinsic self-sensing concrete - Compositions of intrinsic self-sensing concrete and processing of intrinsic self-sensing concrete - Explains the sensing mechanism, measurement, and sensing properties of intrinsic self-sensing concrete
This book presents an overview over smart structures - its concepts, its active involvement in the vibration control, their applications and the extensive research work done.
This book focuses on nonlinear finite element analysis of thin-walled smart structures integrated with piezoelectric materials. Two types of nonlinear phenomena are presented in the book, namely geometrical nonlinearity and material nonlinearity. Geometrical nonlinearity mainly results from large deformations and large rotations of structures. The book discusses various geometrically nonlinear theories including von Kármán type nonlinear theory, moderate rotation nonlinear theory, fully geometrically nonlinear theory with moderate rotations and large rotation nonlinear theory. The material nonlinearity mainly considered in this book is electroelastic coupled nonlinearity resulting from large driving electric field. This book will be a good reference for students and researchers in the field of structural mechanics.
Since the 1980s, scientists have been researching adaptive structures for materials, for multifunctional elements or even for complete systems. Adaptronics (smart materials, smart structures, smart systems) is a field of distinct interdisciplinarity. The book therefore offers an interdisciplinary view of adaptronic systems, materials and functional elements and their applications. The subject matter integrates various engineering disciplines, from electrical engineering and information technology to manufacturing and control engineering, materials engineering and structural mechanics - to name but a few of the relevant subject areas. Starting from the basic principles and variants of adaptronic systems and functional materials, the textbook explains the different construction methods of functional elements. Building on this, readers learn how to apply this knowledge to active shape control, active vibration control and active vibroacoustics. For each of these topics the author presents current examples from research, discusses research results and future research questions. Each of the nine chapters closes with references to further literature. An index of the mathematical symbols used and a keyword index facilitate learning for readers.The book is aimed at Master's students in engineering courses such as mechanical engineering, aerospace engineering, mechatronics, automotive engineering and related courses. The book provides a comprehensive overview for industrial practitioners who want to familiarize themselves with the field of adaptronics and also serves as a reliable reference book.
This book introduces the enabling concepts that make up the so-called smart structure and presents a number of brief case studies to illustrate the applications of these concepts. It examines the domains of the individual technologies and defines the challenges faced by the integrator. The book is particularly effective for the potential system user who needs a good technical general background on the subject and is also useful for students and researchers in contributory technologies who want to better understand the context of their work. Consultants in civil and structural engineering will also find it of interest.
A smart civil structure integrates smart materials, sensors, actuators, signal processors, communication networks, power sources, diagonal strategies, control strategies, repair strategies, and life-cycle management strategies. It should function optimally and safely in its environment and maintain structural integrity during strong winds, severe earthquakes, and other extreme events. This book extends from the fundamentals to the state-of-the-art. It covers the elements of smart civil structures, their integration, and their functions. The elements consist of smart materials, sensors, control devices, signal processors, and communication networks. Integration refers to multi-scale modelling and model updating, multi-type sensor placement, control theory, and collective placement of control devices and sensors. And the functions include structural health monitoring, structural vibration control, structural self-repairing, and structural energy harvesting, with emphasis on their synthesis to form truly smart civil structures. It suits civil engineering students, professionals, and researchers with its blend of principles and practice.