Provides an account of internal, external and unsteady slow viscous flows, including the advances. This book shows how the method of eigenfunctions, in conjunction with least squares, can be used to solve problems of low Reynolds number flows, including three-dimensional internal and unsteady flows.
This book commemorates the appearance one hundred years ago of a paper on slow viscous flow, written by the physicist and Nobel laureate H.A. Lorentz. Although Lorentz is not remembered by most as a fluid dynamicist - indeed, his fame rests primarily on his contributions to the theory of electrons, electrodynamics and early developments in relativity - his fluid-mechanics paper of 1896 contains many ideas which have remained important in fluid mechanics to this very day. In that short paper he put forward his reciprocal theorem (an integral-equation formulation which is used extensively nowadays in boundary-element calculations) and his reflection theorem. Furthermore, he must be credited with the invention of the stokeslet. The contributors to this book have all made their mark in slow viscous flow. Each of these authors highlights further developments of one of Lorentz's ideas. There are applications in sintering, micropolar fluids, bubbles, locomotion of microorganisms, non-Newtonian fluids, drag calculations, etc. Other contributions are of a more theoretical nature, such as the flow due to an array of stokeslets, the interaction between a drop and a particle, the interaction of a particle and a vortex, the reflection theorem for other geometries, a disk moving along a wall and a higher-order investigation. Lorentz's paper of 1896 is also included in an English translation. An introductory paper puts Lorentz's work in fluid mechanics in a wider perspective. His other great venture in fluid mechanics - his theoretical modelling on the enclosure of the Zuyderzee - is also discussed. The introduction also presents a short description of Lorentz's life and times. It was Albert Einstein who said of Lorentz that he was `...the greatest and noblest man of our time'.
This book is a comprehensive and intensive monograph for scientists, engineers and applied mathematicians, as well as graduate students in fluid dynamics. It starts with a brief review of fundamentals of fluid dynamics, with an innovative emphasis on the intrinsic orthogonal decomposition of fluid dynamic process, by which one naturally identifies the content and scope of vorticity and vortex dynamics. This is followed by a detailed presentation of vorticity dynamics as the basis of later development. In vortex dynamics part the book deals with the formation, motion, interaction, stability, and breakdown of various vortices. Typical vortex structures are analyzed in laminar, transitional, and turbulent flows, including stratified and rotational fluids. Physical understanding of vertical flow phenomena and mechanisms is the first priority throughout the book. To make the book self-contained, some mathematical background is briefly presented in the main text, but major prerequisites are systematically given in appendices. Material usually not seen in books on vortex dynamics is included, such as geophysical vortex dynamics, aerodynamic vortical flow diagnostics and management.
Combustion of Two-Phase Reactive Media addresses the complex phenomena involved in the burning of solid and liquid fuels. In fact, the multiplicity of phenomena characteristic of combustion of two-phase media determine the contents. The three parts deal with: the dynamics of a single particle; combustion wave propagation in two-phase reactive media; and thermal regimes of combustion reactors. The book generalizes the results of numerous investigations into the ignition and combustion of solid particles, droplets and bubbles, combustion wave propagation in heterogeneous reactive media, the stability of combustion of two-phase media, as well as the thermal regimes of high-temperature combustion reactors. It merges findings from the authors’ investigations into problems of two-phase flows and material from graduate-level courses they teach at Technion-Israel Institute of Technology.
The solution of problems of combustion instability for more effective communication between the various workers in this field is considered. The extent of combustion instability problems in liquid propellant rocket engines and recommendations for their solution are discussed. The most significant developments, both theoretical and experimental, are presented, with emphasis on fundamental principles and relationships between alternative approaches.
The field of multiphase flows has grown by leaps and bounds in the last thirty years and is now regarded as a major discipline. Engineering applications, products and processes with particles, bubbles and drops have consistently grown in number and importance. An increasing number of conferences, scientific fora and archived journals are dedicated to the dissemination of information on flow, heat and mass transfer of fluids with particles, bubbles and drops. Numerical computations and "thought experiments" have supplemented most physical experiments and a great deal of the product design and testing processes. The literature on computational fluid dynamics with particles, bubbles and drops has grown at an exponential rate, giving rise to new results, theories and better understanding of the transport processes with particles, bubbles and drops. This book captures and summarizes all these advances in a unified, succinct and pedagogical way. Contents: Fundamental Equations and Characteristics of Particles, Bubbles and Drops; Low Reynolds Number Flows; High Reynolds Number Flows; Non-Spherical Particles, Bubbles and Drops; Effects of Rotation, Shear and Boundaries; Effects of Turbulence; Electro-Kinetic, Thermo-Kinetic and Porosity Effects; Effects of Higher Concentration and Collisions; Molecular and Statistical Modeling; Numerical Methods-CFD. Key Features Summarizes the recent important results in the theory of transport processes of fluids with particles, bubbles and drops Presents the results in a unified and succinct way Contains more than 600 references where an interested reader may find details of the results Makes connections from all theories and results to physical and engineering applications Readership: Researchers, practicing engineers and physicists that deal with any aspects of Multiphase Flows. It will also be of interest to academics and researchers in the general fields of mechanical and chemical engineering.
This volume presents applications of the Pi-Theorem to fluid mechanics and heat and mass transfer. The Pi-theorem yields a physical motivation behind many flow processes and therefore it constitutes a valuable tool for the intelligent planning of experiments in fluids. After a short introduction to the underlying differential equations and their treatments, the author presents many novel approaches how to use the Pi-theorem to understand fluid mechanical issues. The book is a great value to the fluid mechanics community, as it cuts across many subdisciplines of experimental fluid mechanics.