Singular Spectrum Analysis of Biomedical Signals

Singular Spectrum Analysis of Biomedical Signals

Author: Saeid Sanei

Publisher: CRC Press

Published: 2015-12-23

Total Pages: 270

ISBN-13: 1466589280

DOWNLOAD EBOOK

Recent advancements in signal processing and computerised methods are expected to underpin the future progress of biomedical research and technology, particularly in measuring and assessing signals and images from the human body. This book focuses on singular spectrum analysis (SSA), an effective approach for single channel signal analysis, and its


Practical Biomedical Signal Analysis Using MATLAB®

Practical Biomedical Signal Analysis Using MATLAB®

Author: Katarzyn J. Blinowska

Publisher: CRC Press

Published: 2011-09-12

Total Pages: 326

ISBN-13: 1439812020

DOWNLOAD EBOOK

Practical Biomedical Signal Analysis Using MATLAB® presents a coherent treatment of various signal processing methods and applications. The book not only covers the current techniques of biomedical signal processing, but it also offers guidance on which methods are appropriate for a given task and different types of data. The first several chapters of the text describe signal analysis techniques—including the newest and most advanced methods—in an easy and accessible way. MATLAB routines are listed when available and freely available software is discussed where appropriate. The final chapter explores the application of the methods to a broad range of biomedical signals, highlighting problems encountered in practice. A unified overview of the field, this book explains how to properly use signal processing techniques for biomedical applications and avoid misinterpretations and pitfalls. It helps readers to choose the appropriate method as well as design their own methods.


Biomedical Signal Analysis

Biomedical Signal Analysis

Author: Rangaraj M. Rangayyan

Publisher: John Wiley & Sons

Published: 2024-02-19

Total Pages: 724

ISBN-13: 1119825873

DOWNLOAD EBOOK

Biomedical Signal Analysis Comprehensive resource covering recent developments, applications of current interest, and advanced techniques for biomedical signal analysis Biomedical Signal Analysis provides extensive insight into digital signal processing techniques for filtering, identification, characterization, classification, and analysis of biomedical signals with the aim of computer-aided diagnosis, taking a unique approach by presenting case studies encountered in the authors’ research work. Each chapter begins with the statement of a biomedical signal problem, followed by a selection of real-life case studies and illustrations with the associated signals. Signal processing, modeling, or analysis techniques are then presented, starting with relatively simple “textbook” methods, followed by more sophisticated research-informed approaches. Each chapter concludes with solutions to practical applications. Illustrations of real-life biomedical signals and their derivatives are included throughout. The third edition expands on essential background material and advanced topics without altering the underlying pedagogical approach and philosophy of the successful first and second editions. The book is enhanced by a large number of study questions and laboratory exercises as well as an online repository with solutions to problems and data files for laboratory work and projects. Biomedical Signal Analysis provides theoretical and practical information on: The origin and characteristics of several biomedical signals Analysis of concurrent, coupled, and correlated processes, with applications in monitoring of sleep apnea Filtering for removal of artifacts, random noise, structured noise, and physiological interference in signals generated by stationary, nonstationary, and cyclostationary processes Detection and characterization of events, covering methods for QRS detection, identification of heart sounds, and detection of the dicrotic notch Analysis of waveshape and waveform complexity Interpretation and analysis of biomedical signals in the frequency domain Mathematical, electrical, mechanical, and physiological modeling of biomedical signals and systems Sophisticated analysis of nonstationary, multicomponent, and multisource signals using wavelets, time-frequency representations, signal decomposition, and dictionary-learning methods Pattern classification and computer-aided diagnosis Biomedical Signal Analysis is an ideal learning resource for senior undergraduate and graduate engineering students. Introductory sections on signals, systems, and transforms make this book accessible to students in disciplines other than electrical engineering.


Singular Spectrum Analysis for Time Series

Singular Spectrum Analysis for Time Series

Author: Nina Golyandina

Publisher: Springer Nature

Published: 2020-11-23

Total Pages: 156

ISBN-13: 3662624362

DOWNLOAD EBOOK

This book gives an overview of singular spectrum analysis (SSA). SSA is a technique of time series analysis and forecasting combining elements of classical time series analysis, multivariate statistics, multivariate geometry, dynamical systems and signal processing. SSA is multi-purpose and naturally combines both model-free and parametric techniques, which makes it a very special and attractive methodology for solving a wide range of problems arising in diverse areas. Rapidly increasing number of novel applications of SSA is a consequence of the new fundamental research on SSA and the recent progress in computing and software engineering which made it possible to use SSA for very complicated tasks that were unthinkable twenty years ago. In this book, the methodology of SSA is concisely but at the same time comprehensively explained by two prominent statisticians with huge experience in SSA. The book offers a valuable resource for a very wide readership, including professional statisticians, specialists in signal and image processing, as well as specialists in numerous applied disciplines interested in using statistical methods for time series analysis, forecasting, signal and image processing. The second edition of the book contains many updates and some new material including a thorough discussion on the place of SSA among other methods and new sections on multivariate and multidimensional extensions of SSA.


Biomedical Signal Analysis

Biomedical Signal Analysis

Author: Fabian J. Theis

Publisher: MIT Press

Published: 2010

Total Pages: 438

ISBN-13: 0262013282

DOWNLOAD EBOOK

A comprehensive introduction to innovative methods in the field of biomedical signal analysis, covering both theory and practice. Biomedical signal analysis has become one of the most important visualization and interpretation methods in biology and medicine. Many new and powerful instruments for detecting, storing, transmitting, analyzing, and displaying images have been developed in recent years, allowing scientists and physicians to obtain quantitative measurements to support scientific hypotheses and medical diagnoses. This book offers an overview of a range of proven and new methods, discussing both theoretical and practical aspects of biomedical signal analysis and interpretation.After an introduction to the topic and a survey of several processing and imaging techniques, the book describes a broad range of methods, including continuous and discrete Fourier transforms, independent component analysis (ICA), dependent component analysis, neural networks, and fuzzy logic methods. The book then discusses applications of these theoretical tools to practical problems in everyday biosignal processing, considering such subjects as exploratory data analysis and low-frequency connectivity analysis in fMRI, MRI signal processing including lesion detection in breast MRI, dynamic cerebral contrast-enhanced perfusion MRI, skin lesion classification, and microscopic slice image processing and automatic labeling. Biomedical Signal Analysis can be used as a text or professional reference. Part I, on methods, forms a self-contained text, with exercises and other learning aids, for upper-level undergraduate or graduate-level students. Researchers or graduate students in systems biology, genomic signal processing, and computer-assisted radiology will find both parts I and II (on applications) a valuable handbook.


Data-Centric Business and Applications

Data-Centric Business and Applications

Author: Dmytro Ageyev

Publisher: Springer Nature

Published: 2021-06-04

Total Pages: 452

ISBN-13: 3030718921

DOWNLOAD EBOOK

This book, building on the authors’ previous work, presents new communication and networking technologies, challenges and opportunities of information/data processing and transmission. It also discusses the development of more intelligent and efficient communication technologies, which are an essential part of current day-to-day life. Information and Communication Technologies (ICTs) have an enormous impact on businesses and our day-to-day lives over the past three decades and continue to do so. Modern methods of business information processing are opening exciting new opportunities for doing business on the basis of information technologies. The book contains research that spans a wide range of communication and networking technologies, including wireless sensor networks, optical and telecommunication networks, storage area networks, error-free transmission and signal processing.


Time Frequency and Wavelets in Biomedical Signal Processing

Time Frequency and Wavelets in Biomedical Signal Processing

Author: Metin Akay

Publisher: Wiley-IEEE Press

Published: 1998

Total Pages: 780

ISBN-13:

DOWNLOAD EBOOK

Biomedical Engineering Time Frequency and Wavelets in Biomedical Signal Processing IEEE Press Series in Biomedical Engineering Metin Akay, Series Editor Endorsed by the IEEE Engineering in Medicine and Biology Society Brimming with top articles from experts in signal processing and biomedical engineering, Time Frequency and Wavelets in Biomedical Signal Processing introduces time-frequency, time-scale, wavelet transform methods, and their applications in biomedical signal processing. This edited volume incorporates the most recent developments in the field to illustrate thoroughly how the use of these time-frequency methods is currently improving the quality of medical diagnosis, including technologies for assessing pulmonary and respiratory conditions, EEGs, hearing aids, MRIs, mammograms, X rays, evoked potential signals analysis, neural networks applications, among other topics. Time Frequency and Wavelets in Biomedical Signal Processing will be of particular interest to signal processing engineers, biomedical engineers, and medical researchers. Topics covered include: Time-frequency analysis methods and biomedical applications Wavelets, wavelet packets, and matching pursuits and biomedical applications Wavelets and medical imaging Wavelets, neural networks, and fractals


Brain Seizure Detection and Classification Using EEG Signals

Brain Seizure Detection and Classification Using EEG Signals

Author: Varsha K. Harpale

Publisher: Academic Press

Published: 2021-09-09

Total Pages: 176

ISBN-13: 0323911218

DOWNLOAD EBOOK

Brain Seizure Detection and Classification Using Electroencephalographic Signals presents EEG signal processing and analysis with high performance feature extraction. The book covers the feature selection method based on One-way ANOVA, along with high performance machine learning classifiers for the classification of EEG signals in normal and epileptic EEG signals. In addition, the authors also present new methods of feature extraction, including Singular Spectrum-Empirical Wavelet Transform (SSEWT) for improved classification of seizures in significant seizure-types, specifically epileptic and Non-Epileptic Seizures (NES). The performance of the system is compared with existing methods of feature extraction using Wavelet Transform (WT) and Empirical Wavelet Transform (EWT). The book's objective is to analyze the EEG signals to observe abnormalities of brain activities called epileptic seizure. Seizure is a neurological disorder in which too many neurons are excited at the same time and are triggered by brain injury or by chemical imbalance. Presents EEG signal processing and analysis concepts with high performance feature extraction Discusses recent trends in seizure detection, prediction and classification methodologies Helps classify epileptic and non-epileptic seizures where misdiagnosis may lead to the unnecessary use of antiepileptic medication Provides new guidance and technical discussions on feature-extraction methods and feature selection methods based on One-way ANOVA, along with high performance machine learning classifiers for classification of EEG signals in normal and epileptic EEG signals, and new methods of feature extraction developed by the authors, including Singular Spectrum-Empirical Wavelet