Singular Perturbation Methods for Ordinary Differential Equations

Singular Perturbation Methods for Ordinary Differential Equations

Author: Robert E., Jr. O'Malley

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 234

ISBN-13: 1461209773

DOWNLOAD EBOOK

This book results from various lectures given in recent years. Early drafts were used for several single semester courses on singular perturbation meth ods given at Rensselaer, and a more complete version was used for a one year course at the Technische Universitat Wien. Some portions have been used for short lecture series at Universidad Central de Venezuela, West Vir ginia University, the University of Southern California, the University of California at Davis, East China Normal University, the University of Texas at Arlington, Universita di Padova, and the University of New Hampshire, among other places. As a result, I've obtained lots of valuable feedback from students and listeners, for which I am grateful. This writing continues a pattern. Earlier lectures at Bell Laboratories, at the University of Edin burgh and New York University, and at the Australian National University led to my earlier works (1968, 1974, and 1978). All seem to have been useful for the study of singular perturbations, and I hope the same will be true of this monograph. I've personally learned much from reading and analyzing the works of others, so I would especially encourage readers to treat this book as an introduction to a diverse and exciting literature. The topic coverage selected is personal and reflects my current opin ions. An attempt has been made to encourage a consistent method of ap proaching problems, largely through correcting outer limits in regions of rapid change. Formal proofs of correctness are not emphasized.


Singular Perturbation Theory

Singular Perturbation Theory

Author: R.S. Johnson

Publisher: Springer Science & Business Media

Published: 2005-12-28

Total Pages: 305

ISBN-13: 0387232176

DOWNLOAD EBOOK

The importance of mathematics in the study of problems arising from the real world, and the increasing success with which it has been used to model situations ranging from the purely deterministic to the stochastic, is well established. The purpose of the set of volumes to which the present one belongs is to make available authoritative, up to date, and self-contained accounts of some of the most important and useful of these analytical approaches and techniques. Each volume provides a detailed introduction to a specific subject area of current importance that is summarized below, and then goes beyond this by reviewing recent contributions, and so serving as a valuable reference source. The progress in applicable mathematics has been brought about by the extension and development of many important analytical approaches and techniques, in areas both old and new, frequently aided by the use of computers without which the solution of realistic problems would otherwise have been impossible.


Theory and Applications of Stochastic Differential Equations

Theory and Applications of Stochastic Differential Equations

Author: Zeev Schuss

Publisher:

Published: 1980

Total Pages: 342

ISBN-13:

DOWNLOAD EBOOK

Presents theory, sources, and applications of stochastic differential equations of Ito's type; those containing white noise. Closely studies first passage problems by modern singular perturbation methods and their role in various fields of science. Introduces analytical methods to obtain information on probabilistic quantities. Demonstrates the role of partial differential equations in this context. Clarifies the relationship between the complex mathematical theories involved and sources of the problem for physicists, chemists, engineers, and other non-mathematical specialists.


Applied Stochastic Differential Equations

Applied Stochastic Differential Equations

Author: Simo Särkkä

Publisher: Cambridge University Press

Published: 2019-05-02

Total Pages: 327

ISBN-13: 1316510085

DOWNLOAD EBOOK

With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.


Stochastic Differential Equations and Applications

Stochastic Differential Equations and Applications

Author: Avner Friedman

Publisher: Academic Press

Published: 2014-06-20

Total Pages: 248

ISBN-13: 1483217876

DOWNLOAD EBOOK

Stochastic Differential Equations and Applications, Volume 1 covers the development of the basic theory of stochastic differential equation systems. This volume is divided into nine chapters. Chapters 1 to 5 deal with the basic theory of stochastic differential equations, including discussions of the Markov processes, Brownian motion, and the stochastic integral. Chapter 6 examines the connections between solutions of partial differential equations and stochastic differential equations, while Chapter 7 describes the Girsanov's formula that is useful in the stochastic control theory. Chapters 8 and 9 evaluate the behavior of sample paths of the solution of a stochastic differential system, as time increases to infinity. This book is intended primarily for undergraduate and graduate mathematics students.


Robust Numerical Methods for Singularly Perturbed Differential Equations

Robust Numerical Methods for Singularly Perturbed Differential Equations

Author: Hans-Görg Roos

Publisher: Springer Science & Business Media

Published: 2008-09-17

Total Pages: 599

ISBN-13: 3540344675

DOWNLOAD EBOOK

This new edition incorporates new developments in numerical methods for singularly perturbed differential equations, focusing on linear convection-diffusion equations and on nonlinear flow problems that appear in computational fluid dynamics.


Singular Perturbation Methods in Control

Singular Perturbation Methods in Control

Author: Petar Kokotovic

Publisher: SIAM

Published: 1999-01-01

Total Pages: 386

ISBN-13: 9781611971118

DOWNLOAD EBOOK

Singular perturbations and time-scale techniques were introduced to control engineering in the late 1960s and have since become common tools for the modeling, analysis, and design of control systems. In this SIAM Classics edition of the 1986 book, the original text is reprinted in its entirety (along with a new preface), providing once again the theoretical foundation for representative control applications. This book continues to be essential in many ways. It lays down the foundation of singular perturbation theory for linear and nonlinear systems, it presents the methodology in a pedagogical way that is not available anywhere else, and it illustrates the theory with many solved examples, including various physical examples and applications. So while new developments may go beyond the topics covered in this book, they are still based on the methodology described here, which continues to be their common starting point.


Singular Perturbations and Asymptotics

Singular Perturbations and Asymptotics

Author: Richard E. Meyer

Publisher: Academic Press

Published: 2014-05-10

Total Pages: 418

ISBN-13: 1483264572

DOWNLOAD EBOOK

Mathematics Research Center Symposia and Advanced Seminar Series: Singular Perturbations and Asymptotics covers the lectures presented at an Advanced Seminar on Singular Perturbation and Asymptotics, held in Madison, Wisconsin on May 28-30, 1980 under the auspices of the Mathematics Research Center of the University of Wisconsin—Madison. The book focuses on the processes, methodologies, reactions, and principles involved in singular perturbations and asymptotics, including boundary value problems, equations, perturbations, water waves, and gas dynamics. The selection first elaborates on basic concepts in the analysis of singular perturbations, limit process expansions and approximate equations, and results on singularly perturbed boundary value problems. Discussions focus on quasi-linear and nonlinear problems, semilinear systems, water waves, expansion in gas dynamics, asymptotic matching principles, and classical perturbation analysis. The text then takes a look at multiple solutions of singularly perturbed systems in the conditionally stable case and singular perturbations, stochastic differential equations, and applications. The book ponders on connection problems in the parameterless case; general connection-formula problem for linear differential equations of the second order; and turning-point problems for ordinary differential equations of hydrodynamic type. Topics include the comparison equation method, boundary layer flows, compound matrix method, asymptotic solution of the connection-formula problem, and higher order equations. The selection is a valuable source of information for researchers interested in singular perturbations and asymptotics.