Geometric Singular Perturbation Theory Beyond the Standard Form

Geometric Singular Perturbation Theory Beyond the Standard Form

Author: Martin Wechselberger

Publisher: Springer Nature

Published: 2020-02-21

Total Pages: 143

ISBN-13: 3030363996

DOWNLOAD EBOOK

This volume provides a comprehensive review of multiple-scale dynamical systems. Mathematical models of such multiple-scale systems are considered singular perturbation problems, and this volume focuses on the geometric approach known as Geometric Singular Perturbation Theory (GSPT). It is the first of its kind that introduces the GSPT in a coordinate-independent manner. This is motivated by specific examples of biochemical reaction networks, electronic circuit and mechanic oscillator models and advection-reaction-diffusion models, all with an inherent non-uniform scale splitting, which identifies these examples as singular perturbation problems beyond the standard form. The contents cover a general framework for this GSPT beyond the standard form including canard theory, concrete applications, and instructive qualitative models. It contains many illustrations and key pointers to the existing literature. The target audience are senior undergraduates, graduate students and researchers interested in using the GSPT toolbox in nonlinear science, either from a theoretical or an application point of view. Martin Wechselberger is Professor at the School of Mathematics & Statistics, University of Sydney, Australia. He received the J.D. Crawford Prize in 2017 by the Society for Industrial and Applied Mathematics (SIAM) for achievements in the field of dynamical systems with multiple time-scales.


Singular Perturbation Methods for Ordinary Differential Equations

Singular Perturbation Methods for Ordinary Differential Equations

Author: Robert E., Jr. O'Malley

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 234

ISBN-13: 1461209773

DOWNLOAD EBOOK

This book results from various lectures given in recent years. Early drafts were used for several single semester courses on singular perturbation meth ods given at Rensselaer, and a more complete version was used for a one year course at the Technische Universitat Wien. Some portions have been used for short lecture series at Universidad Central de Venezuela, West Vir ginia University, the University of Southern California, the University of California at Davis, East China Normal University, the University of Texas at Arlington, Universita di Padova, and the University of New Hampshire, among other places. As a result, I've obtained lots of valuable feedback from students and listeners, for which I am grateful. This writing continues a pattern. Earlier lectures at Bell Laboratories, at the University of Edin burgh and New York University, and at the Australian National University led to my earlier works (1968, 1974, and 1978). All seem to have been useful for the study of singular perturbations, and I hope the same will be true of this monograph. I've personally learned much from reading and analyzing the works of others, so I would especially encourage readers to treat this book as an introduction to a diverse and exciting literature. The topic coverage selected is personal and reflects my current opin ions. An attempt has been made to encourage a consistent method of ap proaching problems, largely through correcting outer limits in regions of rapid change. Formal proofs of correctness are not emphasized.


Analysis as a Tool in Mathematical Physics

Analysis as a Tool in Mathematical Physics

Author: Pavel Kurasov

Publisher: Springer Nature

Published: 2020-07-14

Total Pages: 627

ISBN-13: 3030315312

DOWNLOAD EBOOK

Boris Pavlov (1936-2016), to whom this volume is dedicated, was a prominent specialist in analysis, operator theory, and mathematical physics. As one of the most influential members of the St. Petersburg Mathematical School, he was one of the founders of the Leningrad School of Non-self-adjoint Operators. This volume collects research papers originating from two conferences that were organized in memory of Boris Pavlov: “Spectral Theory and Applications”, held in Stockholm, Sweden, in March 2016, and “Operator Theory, Analysis and Mathematical Physics – OTAMP2016” held at the Euler Institute in St. Petersburg, Russia, in August 2016. The volume also includes water-color paintings by Boris Pavlov, some personal photographs, as well as tributes from friends and colleagues.


Multiscale Methods

Multiscale Methods

Author: Grigoris Pavliotis

Publisher: Springer Science & Business Media

Published: 2008-01-18

Total Pages: 314

ISBN-13: 0387738290

DOWNLOAD EBOOK

This introduction to multiscale methods gives you a broad overview of the methods’ many uses and applications. The book begins by setting the theoretical foundations of the methods and then moves on to develop models and prove theorems. Extensive use of examples shows how to apply multiscale methods to solving a variety of problems. Exercises then enable you to build your own skills and put them into practice. Extensions and generalizations of the results presented in the book, as well as references to the literature, are provided in the Discussion and Bibliography section at the end of each chapter.With the exception of Chapter One, all chapters are supplemented with exercises.


Singular Perturbations I

Singular Perturbations I

Author: L.S. Frank

Publisher: Elsevier

Published: 1990-08-16

Total Pages: 581

ISBN-13: 0080875440

DOWNLOAD EBOOK

Singular perturbations, one of the central topics in asymptotic analysis, also play a special role in describing physical phenomena such as the propagation of waves in media in the presence of small energy dissipations or dispersions, the appearance of boundary or interior layers in fluid and gas dynamics, as well as in elasticity theory, semi-classical asymptotic approximations in quantum mechanics etc. Elliptic and coercive singular perturbations are of special interest for the asymptotic solution of problems which are characterized by boundary layer phenomena, e.g. the theory of thin buckling plates, elastic rods and beams. This first volume deals with linear singular perturbations (on smooth manifolds without boundary) considered as equicontinuous linear mappings between corresponding families of Sobolev-Slobodetski's type spaces of vectorial order.


The Theory of Singular Perturbations

The Theory of Singular Perturbations

Author: E.M. de Jager

Publisher: Elsevier

Published: 1996-11-08

Total Pages: 353

ISBN-13: 0080542751

DOWNLOAD EBOOK

The subject of this textbook is the mathematical theory of singular perturbations, which despite its respectable history is still in a state of vigorous development. Singular perturbations of cumulative and of boundary layer type are presented. Attention has been given to composite expansions of solutions of initial and boundary value problems for ordinary and partial differential equations, linear as well as quasilinear; also turning points are discussed.The main emphasis lies on several methods of approximation for solutions of singularly perturbed differential equations and on the mathematical justification of these methods. The latter implies a priori estimates of solutions of differential equations; this involves the application of Gronwall's lemma, maximum principles, energy integrals, fixed point theorems and Gåding's theorem for general elliptic equations. These features make the book of value to mathematicians and researchers in the engineering sciences, interested in the mathematical justification of formal approximations of solutions of practical perturbation problems. The text is selfcontained and each chapter is concluded with some exercises.


Singular Perturbation Methods in Control

Singular Perturbation Methods in Control

Author: Petar Kokotovic

Publisher: SIAM

Published: 1999-01-01

Total Pages: 386

ISBN-13: 9781611971118

DOWNLOAD EBOOK

Singular perturbations and time-scale techniques were introduced to control engineering in the late 1960s and have since become common tools for the modeling, analysis, and design of control systems. In this SIAM Classics edition of the 1986 book, the original text is reprinted in its entirety (along with a new preface), providing once again the theoretical foundation for representative control applications. This book continues to be essential in many ways. It lays down the foundation of singular perturbation theory for linear and nonlinear systems, it presents the methodology in a pedagogical way that is not available anywhere else, and it illustrates the theory with many solved examples, including various physical examples and applications. So while new developments may go beyond the topics covered in this book, they are still based on the methodology described here, which continues to be their common starting point.