Singular Limits of Dispersive Waves

Singular Limits of Dispersive Waves

Author: N.M. Ercolani

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 373

ISBN-13: 1461524741

DOWNLOAD EBOOK

Proceedings of a NATO ARW and of a Chaos, Order, and Patterns Panel sponsored workshop held in Lyons, France, July 8-12, 1991


Recent Advances in Partial Differential Equations, Venice 1996

Recent Advances in Partial Differential Equations, Venice 1996

Author: Peter D. Lax

Publisher: American Mathematical Soc.

Published: 1998

Total Pages: 407

ISBN-13: 0821806572

DOWNLOAD EBOOK

Lax and Nirenberg are two of the most distinguished mathematicians of our times. Their work on partial differential equations (PDEs) over the last half-century has dramatically advanced the subject and has profoundly influenced the course of mathematics. A huge part of the development in PDEs during this period has either been through their work, motivated by it or achieved by their postdocs and students. A large number of mathematicians honored these two exceptional scientists in a week-long conference in Venice (June 1996) on the occasion of their 70th birthdays. This volume contains the proceedings of the conference, which focused on the modern theory of nonlinear PDEs and their applications. Among the topics treated are turbulence, kinetic models of a rarefied gas, vortex filaments, dispersive waves, singular limits and blow-up solutions, conservation laws, Hamiltonian systems and others. The conference served as a forum for the dissemination of new scientific ideas and discoveries and enhanced scientific communication by bringing together such a large number of scientists working in related fields. THe event allowed the international mathematics community to honor two of its outstanding members.


Nonlinear Dispersive Equations

Nonlinear Dispersive Equations

Author: Christian Klein

Publisher: Springer Nature

Published: 2021

Total Pages: 596

ISBN-13: 3030914275

DOWNLOAD EBOOK

Nonlinear Dispersive Equations are partial differential equations that naturally arise in physical settings where dispersion dominates dissipation, notably hydrodynamics, nonlinear optics, plasma physics and Bose-Einstein condensates. The topic has traditionally been approached in different ways, from the perspective of modeling of physical phenomena, to that of the theory of partial differential equations, or as part of the theory of integrable systems. This monograph offers a thorough introduction to the topic, uniting the modeling, PDE and integrable systems approaches for the first time in book form. The presentation focuses on three "universal" families of physically relevant equations endowed with a completely integrable member: the Benjamin-Ono, Davey-Stewartson, and Kadomtsev-Petviashvili equations. These asymptotic models are rigorously derived and qualitative properties such as soliton resolution are studied in detail in both integrable and non-integrable models. Numerical simulations are presented throughout to illustrate interesting phenomena. By presenting and comparing results from different fields, the book aims to stimulate scientific interactions and attract new students and researchers to the topic. To facilitate this, the chapters can be read largely independently of each other and the prerequisites have been limited to introductory courses in PDE theory.


Nonlinear Periodic Waves and Their Modulations

Nonlinear Periodic Waves and Their Modulations

Author: Anatoli? Mikha?lovich Kamchatnov

Publisher: World Scientific

Published: 2000

Total Pages: 399

ISBN-13: 981024407X

DOWNLOAD EBOOK

Although the mathematical theory of nonlinear waves and solitons has made great progress, its applications to concrete physical problems are rather poor, especially when compared with the classical theory of linear dispersive waves and nonlinear fluid motion. The Whitham method, which describes the combining action of the dispersive and nonlinear effects as modulations of periodic waves, is not widely used by applied mathematicians and physicists, though it provides a direct and natural way to treat various problems in nonlinear wave theory. Therefore it is topical to describe recent developments of the Whitham theory in a clear and simple form suitable for applications in various branches of physics.This book develops the techniques of the theory of nonlinear periodic waves at elementary level and in great pedagogical detail. It provides an introduction to a Whitham's theory of modulation in a form suitable for applications. The exposition is based on a thorough analysis of representative examples taken from fluid mechanics, nonlinear optics and plasma physics rather than on the formulation and study of a mathematical theory. Much attention is paid to physical motivations of the mathematical methods developed in the book. The main applications considered include the theory of collisionless shock waves in dispersive systems and the nonlinear theory of soliton formation in modulationally unstable systems. Exercises are provided to amplify the discussion of important topics such as singular perturbation theory, Riemann invariants, the finite gap integration method, and Whitham equations and their solutions.


Applications of Analytic and Geometric Methods to Nonlinear Differential Equations

Applications of Analytic and Geometric Methods to Nonlinear Differential Equations

Author: P.A. Clarkson

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 466

ISBN-13: 940112082X

DOWNLOAD EBOOK

In the study of integrable systems, two different approaches in particular have attracted considerable attention during the past twenty years. (1) The inverse scattering transform (IST), using complex function theory, which has been employed to solve many physically significant equations, the `soliton' equations. (2) Twistor theory, using differential geometry, which has been used to solve the self-dual Yang--Mills (SDYM) equations, a four-dimensional system having important applications in mathematical physics. Both soliton and the SDYM equations have rich algebraic structures which have been extensively studied. Recently, it has been conjectured that, in some sense, all soliton equations arise as special cases of the SDYM equations; subsequently many have been discovered as either exact or asymptotic reductions of the SDYM equations. Consequently what seems to be emerging is that a natural, physically significant system such as the SDYM equations provides the basis for a unifying framework underlying this class of integrable systems, i.e. `soliton' systems. This book contains several articles on the reduction of the SDYM equations to soliton equations and the relationship between the IST and twistor methods. The majority of nonlinear evolution equations are nonintegrable, and so asymptotic, numerical perturbation and reduction techniques are often used to study such equations. This book also contains articles on perturbed soliton equations. Painlevé analysis of partial differential equations, studies of the Painlevé equations and symmetry reductions of nonlinear partial differential equations. (ABSTRACT) In the study of integrable systems, two different approaches in particular have attracted considerable attention during the past twenty years; the inverse scattering transform (IST), for `soliton' equations and twistor theory, for the self-dual Yang--Mills (SDYM) equations. This book contains several articles on the reduction of the SDYM equations to soliton equations and the relationship between the IST and twistor methods. Additionally, it contains articles on perturbed soliton equations, Painlevé analysis of partial differential equations, studies of the Painlevé equations and symmetry reductions of nonlinear partial differential equations.


Nonlinear Dispersive Partial Differential Equations and Inverse Scattering

Nonlinear Dispersive Partial Differential Equations and Inverse Scattering

Author: Peter D. Miller

Publisher: Springer Nature

Published: 2019-11-14

Total Pages: 530

ISBN-13: 1493998064

DOWNLOAD EBOOK

This volume contains lectures and invited papers from the Focus Program on "Nonlinear Dispersive Partial Differential Equations and Inverse Scattering" held at the Fields Institute from July 31-August 18, 2017. The conference brought together researchers in completely integrable systems and PDE with the goal of advancing the understanding of qualitative and long-time behavior in dispersive nonlinear equations. The program included Percy Deift’s Coxeter lectures, which appear in this volume together with tutorial lectures given during the first week of the focus program. The research papers collected here include new results on the focusing ​nonlinear Schrödinger (NLS) equation, the massive Thirring model, and the Benjamin-Bona-Mahoney equation as dispersive PDE in one space dimension, as well as the Kadomtsev-Petviashvili II equation, the Zakharov-Kuznetsov equation, and the Gross-Pitaevskii equation as dispersive PDE in two space dimensions. The Focus Program coincided with the fiftieth anniversary of the discovery by Gardner, Greene, Kruskal and Miura that the Korteweg-de Vries (KdV) equation could be integrated by exploiting a remarkable connection between KdV and the spectral theory of Schrodinger's equation in one space dimension. This led to the discovery of a number of completely integrable models of dispersive wave propagation, including the cubic NLS equation, and the derivative NLS equation in one space dimension and the Davey-Stewartson, Kadomtsev-Petviashvili and Novikov-Veselov equations in two space dimensions. These models have been extensively studied and, in some cases, the inverse scattering theory has been put on rigorous footing. It has been used as a powerful analytical tool to study global well-posedness and elucidate asymptotic behavior of the solutions, including dispersion, soliton resolution, and semiclassical limits.


The Nonlinear Schrödinger Equation

The Nonlinear Schrödinger Equation

Author: Catherine Sulem

Publisher: Springer Science & Business Media

Published: 2007-06-30

Total Pages: 363

ISBN-13: 0387227687

DOWNLOAD EBOOK

Filling the gap between the mathematical literature and applications to domains, the authors have chosen to address the problem of wave collapse by several methods ranging from rigorous mathematical analysis to formal aymptotic expansions and numerical simulations.


Nonlinear Physics: Theory And Experiment : Nature, Structure And Properties Of Nonlinear Phenomena - Proceedings Of The First Conference

Nonlinear Physics: Theory And Experiment : Nature, Structure And Properties Of Nonlinear Phenomena - Proceedings Of The First Conference

Author: Eleonora Alfinito

Publisher: World Scientific

Published: 1996-06-20

Total Pages: 630

ISBN-13: 981454812X

DOWNLOAD EBOOK

This volume constitutes the proceedings of the Workshop 'Nonlinear Physics. Theory and Experiment' held in Gallipoli (Lecce, Italy) from June 29 to July 7, 1995.The purpose of the Workshop was to bring together scientists whose common interest is the nature, structure and properties of nonlinear phenomena in various areas of physics and applied mathematics.The purpose of the Workshop was to bring together scientists whose common interest is the nature, structure and properties of nonlinear phenomena in various areas of physics and applied mathematics.In fact, topics covered at the Workshop run from nonlinear optics to molecular dynamics, plasma waves, hydrodynamics, quantum electronics and solid state, and from inverse scattering transform methods to dynamical systems including integrability, hamiltonian structures, geometrical aspects, turbulence and chaos.


Physics Letters

Physics Letters

Author:

Publisher:

Published: 2001

Total Pages: 482

ISBN-13:

DOWNLOAD EBOOK

General physics, atomic physics, molecular physics, and solid state physics.