Written by the leading experts in the field, this book describes the development and current state of the art in single molecule spectroscopy. The application of this technique, which started 1989, in physics, chemistry and biosciences is displayed.
Single Molecule Spectroscopy is one of the hottest topics in today's chemistry. It brings us close to the the most exciting vision generations of chemists have been dreaming of: To observe and examine single molecules! While most of chemistry deals with myriads of molecules, this books presents the latest developments for the detection and investigation of single entities. Written by internationally renowned authors, it is a thorough and comprehensive survey of current methods and their applications.
The topics range from single molecule experiments in quantum optics and solid-state physics to analogous investigations in physical chemistry and biophysics.
This is the first book-length treatment of both the theoretical background to fluorescence correlation spectroscopy (FCS) and a variety of applications in various fields of science. The high spatial and temporal resolution of FCS has made it a powerful tool for the analysis of molecular interactions and kinetics, transport properties due to thermal motion, and flow. It contains an essential contribution from Nobel Prize winner M. Eigen, who is credited with inventing FCS.
This book is aimed at providing a practical introduction to single molecule fluorescence experiments, the analysis of the data, and applications of the techniques to the study of biological structure and function. The techniques have wide applications in biology, and underpin some aspects of nanotechnology and quantum information processing.
Providing much-needed information on fluorescence spectroscopy and microscopy, this ready reference covers detection techniques, data registration, and the use of spectroscopic tools, as well as new techniques for improving the resolution of optical microscopy below the resolution gap. Starting with the basic principles, the book goes on to treat fluorophores and labeling, single-molecule fluorescence spectroscopy and enzymatics, as well as excited state energy transfer, and super-resolution fluorescence imaging. Examples show how each technique can help in obtaining detailed and refined information from individual molecular systems.
The detection and measurement of the dynamic interactions of proteins within the living cell are critical to our understanding of cell physiology and pathophysiology. With FRET microscopy and spectroscopy techniques, basic and clinical scientists can make such measurements at very high spatial and temporal resolution. But sources of background information about these tools are very limited, so this book fills an important gap. It covers both the basic concepts and theory behind the various FRET microscopy and spectroscopy techniques, and the practical aspects of using the techniques and analyzing the results. The critical tricks for obtaining a good FRET image and precisely quantitating the signals from living specimens at the nanomolecular level are explained. Valuable information about the preparation of biological samples used for FRET image analysis is also provided. The methods covered include different types of microscopy systems and detectors (wide-field, confocal, multi-photon) as well as specialized techniques such as photobleaching FRET, FLIM-FRET microscopy, spectral imaging FRET, single molecule FRET, and time and image correlation spectroscopy. Starting from the basics, the chapters guide readers through the choice of probes to be used for FRET experiments and the selection of the most suitable experimental approaches to address specific biological questions. Up-to-date, consistently organized, and well-illustrated, this unique book will be welcomed by all researchers who wish to use FRET microscopy and spectroscopy techniques.
The detection of single molecules opens up new horizons in analytical chemistry, biology and medicine. This discipline, which belongs to the expanding field of nanoscience, has been rapidly emerging over the last ten years. This handbook provides a thorough overview of the field. It begins with basics of single molecule detection in solution, describes methods and devices (fluorescense correlation spectroscopy, surface enhanced Raman scattering, sensors, especially dyes, screening techniques, especially confocal laser scanning microscopy). In the second part, various applications in life sciences and medicine provide the latest research results. This modern handbook is a highly accessible reference for a broad community from advanced researchers, specialists and company professionals in physics, spectroscopy, biotechnology, analytical chemistry, and medicine. Written by leading authorities in the field, it is timely and fills a gap - up to now there exists no handbook concerning this theme.
This important volume contains selected papers and extensive commentaries on laser trapping and manipulation of neutral particles using radiation pressure forces. Such techniques apply to a variety of small particles, such as atoms, molecules, macroscopic dielectric particles, living cells, and organelles within cells. These optical methods have had a revolutionary impact on the fields of atomic and molecular physics, biophysics, and many aspects of nanotechnology.In atomic physics, the trapping and cooling of atoms down to nanokelvins and even picokelvin temperatures are possible. These are the lowest temperatures in the universe. This made possible the first demonstration of Bose-Einstein condensation of atomic and molecular vapors. Some of the applications are high precision atomic clocks, gyroscopes, the measurement of gravity, cryptology, atomic computers, cavity quantum electrodynamics and coherent atom lasers.A major application in biophysics is the study of the mechanical properties of the many types of motor molecules, mechanoenzymes, and other macromolecules responsible for the motion of organelles within cells and the locomotion of entire cells. Unique in vitro and in vivo assays study the driving forces, stepping motion, kinetics, and efficiency of these motors as they move along the cell's cytoskeleton. Positional and temporal resolutions have been achieved, making possible the study of RNA and DNA polymerases, as they undergo their various copying, backtracking, and error correcting functions on a single base pair basis.Many applications in nanotechnology involve particle and cell sorting, particle rotation, microfabrication of simple machines, microfluidics, and other micrometer devices. The number of applications continues to grow at a rapid rate.The author is the discoverer of optical trapping and optical tweezers. With his colleagues, he first demonstrated optical levitation, the trapping of atoms, and tweezer trapping and manipulation of living cells and biological particles.This is the only review volume covering the many fields of optical trapping and manipulation. The intention is to provide a selective guide to the literature and to teach how optical traps really work.
This handbook describes experimental techniques to monitor and manipulate individual biomolecules, including fluorescence detection, atomic force microscopy, and optical and magnetic trapping. It includes single-molecule studies of physical properties of biomolecules such as folding, polymer physics of protein and DNA, enzymology and biochemistry, single molecules in the membrane, and single-molecule techniques in living cells.