Combined Nanochannel-nanopore Device for Single- Molecule DNA Analysis and Manipulation

Combined Nanochannel-nanopore Device for Single- Molecule DNA Analysis and Manipulation

Author: Yuning Zhang

Publisher:

Published: 2012

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

"Nanofluidic devices, containing features with dimensions of 1-100 nm, allow for the direct detection, analysis and manipulation of single molecule analytes. In particular, over the past ten years, there has been increasing interest in developing nanofluidic devices capable of analyzing DNA at the single-molecule level, with the goal of developing high throughput mapping and eventually sequencing technology. Part of this thesis will be focusing on single-molecular DNA detection using solid state nanopores. The nanopore fabrication technique via electron beam ablation will be presented. Noise reduction is affected by coating a layer of PDMS(polydimethylsiloxane) on the nanopore supporting chip. Different folding states of DNA molecules translocating through the nanopore are observed. Since the classic nanopore setup has low signal to noise ratio, we have successfully fabricated a novel micro/nanoiudic device combining nanopore detectors with nanochannels devices by embedding a nanopore inside the nanochannel. The device concept, device fabrication, theoretical analysis and preliminary results will be covered in this thesis." --


Nanofluidic Coupled Membrane Devices for Single Molecule Sensing and Imaging

Nanofluidic Coupled Membrane Devices for Single Molecule Sensing and Imaging

Author: Yuning Zhang

Publisher:

Published: 2017

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

"We developed a nanopore embedded nanofluidic device for single-molecular DNA analysis and manipulation. Utilizing the nanofluidic device, we pre-stretched ds-DNA molecules in nanochannel (quasi-1D confinement) and successfully translocated and recaptured DNA molecules through the nanochannel embedded nanopore. We developed a novel nanopore fabrication technique based on conductive atomic force microscopy and dielectric breakdown. We demonstrated the successful fabrication of single nanopore/nanopore array on thin nitride membranes in ambient conditions. We have also developed a model to explain the pore formation mechanism. We developed two different graphene liquid cells for both scanning electron microscopy and transmission electron microscopy. With the new liquid cells, we are able to record real-time nanoparticle dynamics in aqueous conditions under both SEM and TEM. The dramatic slowing down of nanoparticle diffusive movements are observed and analyzed for nanoparticles under nano-scale confinement. " --


Single Molecule Deoxyribonucleic Acid Dynamics in Micro- and Nano-fluidic Devices

Single Molecule Deoxyribonucleic Acid Dynamics in Micro- and Nano-fluidic Devices

Author: Jing Tang (Ph. D.)

Publisher:

Published: 2010

Total Pages: 147

ISBN-13:

DOWNLOAD EBOOK

Rapid genome characterization is one of the grand challenges of genome science today. Although the complete sequences of certain representative human genomes have been determined, genomes from a much larger number of individuals are yet to be studied in order to fully understand genome diversity and genetic diseases. While current state-of-the-art sequencing technologies are limited by the large timescale and cost required to analyze a single sample, an alternative strategy termed DNA mapping has recently received considerable attention. Unlike sequencing which produces single-base resolution, DNA mapping resolves coarse-scale (~kbp) information of the sequence, which is much faster and cheaper to obtain, but still sufficient to discern genomic differences among individuals within a given species. Advances in fluorescence microscopy have allowed the possibility to directly map a single DNA molecule. This concept, though straightforward, faces a major challenge that the entropic tendency of polymeric DNA to adopt a coiled conformation must be overcome so as to optically determine the position of specific sequences of interest on the DNA backbone. The ability to control and manipulate the conformation of single DNA molecules, especially, to stretch them into a linear format in a consistent and uniform manner, is thus crucial to the performance of such mapping devices. The focus of this thesis is to develop a reliable single DNA stretching device that can be used in single molecule DNA mapping, and to experimentally probe the fundamental physics that govern DNA deformation. In the aspect of device design, the strategy we pursue is the use of an elongational electric field with a stagnation point generated in the center of a cross-slot or T channel to stretch DNA molecules. The good compatibility of electric field with small channel dimensions allows us to use micro- or nano-fabricated channels with height on the order of or smaller than the natural size of DNA to keep the molecule always in focus, a feature desirable for any mapping applications. The presence of the stagnation point allows the possibility to dynamically trap and stretch single DNA molecules. This trapping capability ensures uniform stretching within a sample ensemble, and also allows prolonged imaging time to obtain accurate detection results. We primarily investigate the effects of channel height on the stretching process, specifically, we seek the possibility of utilizing slit-like nanoconfinement to aid DNA stretching. Although extensive previous studies have demonstrated that geometric confinement of DNA can substantially alter the conformation and dynamics of these molecules at equilibrium, no direct studies of this non-equilibrium stretching process in confinement exist prior to the work presented in this thesis. We find that slit-like confinement indeed facilitates DNA stretching by reducing the deformation Abstract rate required to achieve a certain extension. However, due to the fact that the steric interactions between the DNA and the confining walls vanish at large extensions, highly stretched DNA under confinement behaves qualitatively similar to unconfined DNA except with screened hydrodynamic interactions, and a new time scale arises that should be used to describe the large change in extension with applied deformation rate. In a consecutive study, we examine the low-extension stretching process and observe a strongly modified coil-stretch transition characterized by two distinct critical deformation rates for DNA in confinement, different from the unconfined case where a single critical deformation rate exists. With kinetic theory modeling, we demonstrate that the two-stage coilstretch transition in confinement is induced by a modified spring force law, which is essentially related to the extension-dependent steric interactions between DNA and the confining walls. We also study aspects of the equilibrium conformation and dynamics of DNA in slit-like confinement in order to provide insight into regimes where existing studies show inconsistent results. We use both experiments and simulations to demonstrate that the in-plane radius of gyration and the 3D radius of gyration of DNA behaves differently in weak confinement. In strong confinement, we do not identify any evident change in the scalings of equilibrium size, diffusivity, and longest relaxation time of the DNA with channel height from the de Gennes regime to the Odijk regime. Although the transition between the de Gennes and Odijk regimes in slit-like confinement still remains an open question, our finding adds more experimental evidence to the side of a continuous transition. The impact of this thesis will be two-fold. We design a DNA stretching device that is readily applicable to single molecule DNA mapping and establish guidelines for the effective operation of the device. Our fundamental results regarding both the equilibrium and non-equilibrium dynamics of DNA molecules in slit-like confinement will serve as a solid basis for both the design of future devices aiming to exploit confinement to manipulate biopolymers, and more complicated studies of confined polymer physics.


Nanofluidics for Single Molecule DNA Sequencing

Nanofluidics for Single Molecule DNA Sequencing

Author: Padmini Krishnakumar

Publisher:

Published: 2013

Total Pages: 131

ISBN-13:

DOWNLOAD EBOOK

After a decade of efforts, accurate and affordable DNA sequencing continues to remain an important goal in current research landscape. This thesis starts with a brief overview of the recent updates in the field of DNA sequencing technologies followed by description of the nanofluidics route to single molecule DNA detection. Chapter 2 presents discusses carbon nanotube(CNT) based nanofluidics. The fabrication and DNA sensing measurements of CNT forest membrane devices are presented. Chapter 3 gives the background for functionalization and recognition aspects of reader molecules. Chapter 4 marks the transition to solid state nanopore nanofluidics. The fabrication of Imidazole functionalized nanopores is discussed. The Single Molecule detection results of DNA from Palladium nanopore devices are presented next. Combining chemical recognition to nanopore technology, it has been possible to prolong the duration of single molecule events from the order of a few micro seconds to upto a few milliseconds. Overall, the work presented in this thesis promises longer single molecule detection time in a nanofludic set up and paves way for novel nanopore- tunnel junction devices that combine recognition chemistry, tunneling device and nanopore approach.


Single Molecule Studies in a Nanofludic Channel

Single Molecule Studies in a Nanofludic Channel

Author: Benjamin Ryan Cipriany

Publisher:

Published: 2012

Total Pages: 306

ISBN-13:

DOWNLOAD EBOOK

Microfluidics and nanofluidics have recently emerged as analytical tools for the study of biology. These devices have enabled the miniaturization of biological sample preparation and detection methods, toward consuming less sample volume and improving the sensitivity and speed of analysis. This thesis explores methods for rapid detection and sorting of individual biomolecules within a nanofluidic channel. In these devices, constructed using thin-film processing techniques, attoliter-scale volume confinement is formed to isolate individual, fluorophore-labeled biomolecules in solution for absolute quantification. These devices enable studies of the unique attributes of each molecule, often masked in ensemble-averaged measurements. Statistical sampling of many molecules is achieved by voltage-actuated, electrokinetic flow within the nanofluidic device to precisely control molecule analysis rate and achieve high throughput single molecule detection (SMD). This nanofluidic technology is applied to epigenetic analysis, enabling the study of epigenetic modifications at a single molecule level. Viable epigenetic analysis within a nanofluidic device is demonstrated using chromatin, DNA bound with histone proteins, which is shown to remain in its native state during nanofluidic confinement and electrokinetic flow under physiologically-relevant conditions. Detection of an epigenetic modification, DNA methylation, is also demonstrated to elucidate its potential for detecting multiple epigenetic marks on an individual molecule. Subsequently, an architecture for automated, high-speed sorting of individual molecules is developed. In this architecture, digital signal processing methods are implemented in a field programmable gate array to achieve real-time SMD. An electric circuit model is developed to actuate and switch electrokinetic flow of molecules, partitioning them into branches of a bifurcated nanofluidic device. An optical system for parallel SMD is realized to experimentally validate the actuation of molecule sorting in-situ. Combined, these components are utilized in automated, fluorescence-activated sorting of individual, methylated DNA molecules, which were then collected for further analysis. This device is reconfigurable and can be generalized for application to fluorescence-activated separations of other molecule types. Finally, a study of various methods for optofluidic integration is presented. The optical properties of fused-silica, silicon nitride, polydimethylsiloxane, hydrogen silisequioxane, and chemical vapor deposited oxides are investigated to consider their use in SMD applications requiring ultra-low autofluorescence and high confinement of the optical probe volume. Findings were then applied to form an optical waveguide as an fluorescence excitation source toward the dense integration of optical and nanofluidic components.


Single Molecule Analysis

Single Molecule Analysis

Author: Iddo Heller

Publisher: Springer Nature

Published: 2023-11-13

Total Pages: 511

ISBN-13: 1071633775

DOWNLOAD EBOOK

This third edition volume expands on the previous editions with new discussions on the latest techniques and developments in the field. The chapters in this book are organized into four parts, and cover topics such as optical tweezers; single-molecule fluorescence tools; atomic force microscopy; magnetic tweezers; applications to virus protein shells, unfolding of proteins, nucleic acids, motor proteins, in vivo and in vitro; and protocols to establish specific surface interactions and perform force calibration. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and thorough, Single Molecule Analysis: Methods and Protocols, Third Edition is a valuable resource for all researchers who want to learn more about this exciting and still expanding field. Chapters 2, 7, 8, 9, 12, 18, and 19 are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.


Nanofluidic System for Single Molecule Manipulation and Analysis

Nanofluidic System for Single Molecule Manipulation and Analysis

Author: Yi-Heng Sen

Publisher:

Published: 2008

Total Pages: 58

ISBN-13:

DOWNLOAD EBOOK

This thesis focuses on characterizing and controlling the translocation of single 48.5 kbp [lambda]-DNA molecules through an artificial nanopore with the objective of enabling multiple measurements on the same molecule. This approach may enable nanopore sensors with enhanced size or charge resolution through statistical averaging over multiple detection events. Nanopores with dimensions of 200 nm x 500 nm x 5 pm connected by microfluidic channels were fabricated using soft lithography in polydimethylsiloxane (PDMS). The PDMS nanopore could successfully detect translocation events of single [lambda]DNA molecules. Factors such as applied voltage bias, DNA concentration, and dimensions of the channel were found to affect the frequency of translocation events and signal-to-noise ratio, which are critical factors for implementing multiple measurements on the same molecule with feedback control. Noise contributions from each part of the experimental apparatus and device were also characterized. Feedback control using Labview was implemented to reverse the direction of applied voltage bias upon detection of a translocation event. The direction of travel of single DNA molecules could be successfully reversed and two measurements on the same molecule were realized. This work lays the foundations for a nanofluidic device for enhanced measurement resolution through statistical averaging over multiple measurements on the same molecule.


Spectroscopy and Dynamics of Single Molecules

Spectroscopy and Dynamics of Single Molecules

Author:

Publisher: Elsevier

Published: 2019-08-14

Total Pages: 402

ISBN-13: 0128164646

DOWNLOAD EBOOK

Spectroscopy and Dynamics of Single Molecules: Methods and Applications reviews the most recent developments in spectroscopic methods and applications. Spectroscopic techniques are the chief experimental methods for testing theoretical models and research in this area plays an important role in stimulating new theoretical developments in physical chemistry. This book provides an authoritative insight into the latest advances in the field, highlighting new techniques, current applications, and potential future developments An ideal reference for chemists and physicists alike, Spectroscopy and Dynamics of Single Molecules: Methods and Applications is a useful guide for all those working in the research, design, or application of spectroscopic tools and techniques across a wide range of fields. Includes the latest research on ultrafast vibrational and electronic dynamics, nonlinear spectroscopies, and single-molecule methods Makes the content accessible to researchers in chemistry, biophysics, and chemical physics through a rigorous multi-disciplinary approach Provides content edited by a world-renowned chemist with more than 30 years of experience in research and instruction