Single Cell Methods

Single Cell Methods

Author: Valentina Proserpio

Publisher:

Published: 2019

Total Pages: 452

ISBN-13: 9781493992423

DOWNLOAD EBOOK

This volume provides a comprehensive overview for investigating biology at the level of individual cells. Chapters are organized into eight parts detailing a single-cell lab, single cell DNA-seq, RNA-seq, single cell proteomic and epigenetic, single cell multi-omics, single cell screening, and single cell live imaging. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Single Cell Methods: Sequencing and Proteomics aims to make each experiment easily reproducible in every lab.


Single-Cell Genomics

Single-Cell Genomics

Author: Parwinder Kaur

Publisher: Springer

Published: 2025-06-13

Total Pages: 0

ISBN-13: 9783030409500

DOWNLOAD EBOOK

Cells, the basic units of biological structure and function, vary broadly in type and state. Individual cells are the building blocks of tissues, organs, and organisms. Each tissue contains cells of many types, and cells of each type can switch among biological states. Single-cell genomics, transcriptomics and epigenomics open a whole new era with the possibility to interrogate every cell of an organism in order to decipher the important biological processes that occur within. This has emerged as a ground-breaking technology that has greatly enhanced our understanding of the complexity of gene expression dynamics at a microscopic resolution. It is anticipated that in the next 5-10 years, the wider research community will be routinely employing this powerful technology as a laboratory staple. Single-cell genomics, transcriptomics and epigenomics hold the potential to revolutionize the way we characterize complex cell assemblies and study their spatial organization, dynamics, clonal distribution, pathways, function, and crosstalks. These fascinating advances have opened up a new field of cell population genomics. Single-cell genomics, transcriptomics and epigenomics research is providing new insights into inter-cellular population genomic diversity, heterogeneity, specialization, taxonomy, spatial and temporal gene regulation, and cellular and organismal development and evolution. It is facilitating plant breeding, understanding of human disease conditions and personalized medicine. This book discusses the perspectives, progress, and promises of single-cell genomics, transcriptomics and epigenomics research and applications in addressing the above and other key biological aspects in all organisms. It establishes the current state-of-the-field and serves as the foundation for future developments in single-cell genomics, transcriptomics, and epigenomics.


Single Cell Sequencing and Systems Immunology

Single Cell Sequencing and Systems Immunology

Author: Xiangdong Wang

Publisher: Springer

Published: 2015-03-27

Total Pages: 184

ISBN-13: 9401797536

DOWNLOAD EBOOK

The volume focuses on the genomics, proteomics, metabolomics, and bioinformatics of a single cell, especially lymphocytes and on understanding the molecular mechanisms of systems immunology. Based on the author’s personal experience, it provides revealing insights into the potential applications, significance, workflow, comparison, future perspectives and challenges of single-cell sequencing for identifying and developing disease-specific biomarkers in order to understand the biological function, activation and dysfunction of single cells and lymphocytes and to explore their functional roles and responses to therapies. It also provides detailed information on individual subgroups of lymphocytes, including cell characters, function, surface markers, receptor function, intracellular signals and pathways, production of inflammatory mediators, nuclear receptors and factors, omics, sequencing, disease-specific biomarkers, bioinformatics, networks and dynamic networks, their role in disease and future prospects. Dr. Xiangdong Wang is a Professor of Medicine, Director of Shanghai Institute of Clinical Bioinformatics, Director of Fudan University Center for Clinical Bioinformatics, Director of the Biomedical Research Center of Zhongshan Hospital, Deputy Director of Shanghai Respiratory Research Institute, Shanghai, China.


Microarray Technology and Cancer Gene Profiling

Microarray Technology and Cancer Gene Profiling

Author: Simone Mocellin

Publisher: Springer Science & Business Media

Published: 2007-08-28

Total Pages: 176

ISBN-13: 038739978X

DOWNLOAD EBOOK

Given the revolutionary implications that the use of this technology might have in the clinical management of cancer patients, the principles of DNA array-based tumor gene profiling must be clearly understood for the data to be correctly interpreted and appreciated. This book, written by leading experts, discusses the technical features characterizing the powerful laboratory tool of microarray technology, and reviews applications in the field of oncology.


Single Cell Diagnostics

Single Cell Diagnostics

Author: Alan R. Thornhill

Publisher: Springer Science & Business Media

Published: 2008-02-02

Total Pages: 185

ISBN-13: 159745298X

DOWNLOAD EBOOK

This book applies modern molecular diagnostic techniques to the analysis of single cells, small numbers of cells, or cell extracts. Emphasis is placed on non-invasive analysis of single cell metabolites and the direct analysis of RNA and DNA from single cells, with a focus on polymerase chain reaction and fluorescence in situ hybridization. In particular, this handbook is essential for practitioners providing care for couples seeking treatment for infertility.


Introduction to Single Cell Omics

Introduction to Single Cell Omics

Author: Xinghua Pan

Publisher: Frontiers Media SA

Published: 2019-09-19

Total Pages: 129

ISBN-13: 2889459209

DOWNLOAD EBOOK

Single-cell omics is a progressing frontier that stems from the sequencing of the human genome and the development of omics technologies, particularly genomics, transcriptomics, epigenomics and proteomics, but the sensitivity is now improved to single-cell level. The new generation of methodologies, especially the next generation sequencing (NGS) technology, plays a leading role in genomics related fields; however, the conventional techniques of omics require number of cells to be large, usually on the order of millions of cells, which is hardly accessible in some cases. More importantly, harnessing the power of omics technologies and applying those at the single-cell level are crucial since every cell is specific and unique, and almost every cell population in every systems, derived in either vivo or in vitro, is heterogeneous. Deciphering the heterogeneity of the cell population hence becomes critical for recognizing the mechanism and significance of the system. However, without an extensive examination of individual cells, a massive analysis of cell population would only give an average output of the cells, but neglect the differences among cells. Single-cell omics seeks to study a number of individual cells in parallel for their different dimensions of molecular profile on genome-wide scale, providing unprecedented resolution for the interpretation of both the structure and function of an organ, tissue or other system, as well as the interaction (and communication) and dynamics of single cells or subpopulations of cells and their lineages. Importantly single-cell omics enables the identification of a minor subpopulation of cells that may play a critical role in biological process over a dominant subpolulation such as a cancer and a developing organ. It provides an ultra-sensitive tool for us to clarify specific molecular mechanisms and pathways and reveal the nature of cell heterogeneity. Besides, it also empowers the clinical investigation of patients when facing a very low quantity of cell available for analysis, such as noninvasive cancer screening with circulating tumor cells (CTC), noninvasive prenatal diagnostics (NIPD) and preimplantation genetic test (PGT) for in vitro fertilization. Single-cell omics greatly promotes the understanding of life at a more fundamental level, bring vast applications in medicine. Accordingly, single-cell omics is also called as single-cell analysis or single-cell biology. Within only a couple of years, single-cell omics, especially transcriptomic sequencing (scRNA-seq), whole genome and exome sequencing (scWGS, scWES), has become robust and broadly accessible. Besides the existing technologies, recently, multiplexing barcode design and combinatorial indexing technology, in combination with microfluidic platform exampled by Drop-seq, or even being independent of microfluidic platform but using a regular PCR-plate, enable us a greater capacity of single cell analysis, switching from one single cell to thousands of single cells in a single test. The unique molecular identifiers (UMIs) allow the amplification bias among the original molecules to be corrected faithfully, resulting in a reliable quantitative measurement of omics in single cells. Of late, a variety of single-cell epigenomics analyses are becoming sophisticated, particularly single cell chromatin accessibility (scATAC-seq) and CpG methylation profiling (scBS-seq, scRRBS-seq). High resolution single molecular Fluorescence in situ hybridization (smFISH) and its revolutionary versions (ex. seqFISH, MERFISH, and so on), in addition to the spatial transcriptome sequencing, make the native relationship of the individual cells of a tissue to be in 3D or 4D format visually and quantitatively clarified. On the other hand, CRISPR/cas9 editing-based In vivo lineage tracing methods enable dynamic profile of a whole developmental process to be accurately displayed. Multi-omics analysis facilitates the study of multi-dimensional regulation and relationship of different elements of the central dogma in a single cell, as well as permitting a clear dissection of the complicated omics heterogeneity of a system. Last but not the least, the technology, biological noise, sequence dropout, and batch effect bring a huge challenge to the bioinformatics of single cell omics. While significant progress in the data analysis has been made since then, revolutionary theory and algorithm logics for single cell omics are expected. Indeed, single-cell analysis exert considerable impacts on the fields of biological studies, particularly cancers, neuron and neural system, stem cells, embryo development and immune system; other than that, it also tremendously motivates pharmaceutic RD, clinical diagnosis and monitoring, as well as precision medicine. This book hereby summarizes the recent developments and general considerations of single-cell analysis, with a detailed presentation on selected technologies and applications. Starting with the experimental design on single-cell omics, the book then emphasizes the consideration on heterogeneity of cancer and other systems. It also gives an introduction of the basic methods and key facts for bioinformatics analysis. Secondary, this book provides a summary of two types of popular technologies, the fundamental tools on single-cell isolation, and the developments of single cell multi-omics, followed by descriptions of FISH technologies, though other popular technologies are not covered here due to the fact that they are intensively described here and there recently. Finally, the book illustrates an elastomer-based integrated fluidic circuit that allows a connection between single cell functional studies combining stimulation, response, imaging and measurement, and corresponding single cell sequencing. This is a model system for single cell functional genomics. In addition, it reports a pipeline for single-cell proteomics with an analysis of the early development of Xenopus embryo, a single-cell qRT-PCR application that defined the subpopulations related to cell cycling, and a new method for synergistic assembly of single cell genome with sequencing of amplification product by phi29 DNA polymerase. Due to the tremendous progresses of single-cell omics in recent years, the topics covered here are incomplete, but each individual topic is excellently addressed, significantly interesting and beneficial to scientists working in or affiliated with this field.


Precision Medicine in Cancer Therapy

Precision Medicine in Cancer Therapy

Author: Daniel D. Von Hoff

Publisher: Springer

Published: 2019-06-17

Total Pages: 283

ISBN-13: 3030163911

DOWNLOAD EBOOK

This book presents the latest advances in precision medicine in some of the most common cancer types, including hematological, lung and breast malignancies. It also discusses emerging technologies that are making a significant impact on precision medicine in cancer therapy. In addition to describing specific approaches that have already entered clinical practice, the book explores new concepts and tools that are being developed. Precision medicine aims to deliver personalized healthcare tailored to a patient’s genetics, lifestyle and environment, and cancer therapy is one of the areas in which it has flourished in recent years. Documenting the latest advances, this book is of interest to physicians and clinical fellows in the front line of the war on cancer, as well as to basic scientists working in the fields of cancer biology, drug development, biomarker discovery, and biomedical engineering. The contributing authors include translational physicians with first-hand experience in precision patient care.


Cancer Evolution

Cancer Evolution

Author: Charles Swanton

Publisher: Perspectives Cshl

Published: 2017

Total Pages: 350

ISBN-13: 9781621821434

DOWNLOAD EBOOK

Tumor progression is driven by mutations that confer growth advantages to different subpopulations of cancer cells. As a tumor grows, these subpopulations expand, accumulate new mutations, and are subjected to selective pressures from the environment, including anticancer interventions. This process, termed clonal evolution, can lead to the emergence of therapy-resistant tumors and poses a major challenge for cancer eradication efforts. Written and edited by experts in the field, this collection from Cold Spring Harbor Perspectives in Medicine examines cancer progression as an evolutionary process and explores how this way of looking at cancer may lead to more effective strategies for managing and treating it. The contributors review efforts to characterize the subclonal architecture and dynamics of tumors, understand the roles of chromosomal instability, driver mutations, and mutation order, and determine how cancer cells respond to selective pressures imposed by anticancer agents, immune cells, and other components of the tumor microenvironment. They compare cancer evolution to organismal evolution and describe how ecological theories and mathematical models are being used to understand the complex dynamics between a tumor and its microenvironment during cancer progression. The authors also discuss improved methods to monitor tumor evolution (e.g., liquid biopsies) and the development of more effective strategies for managing and treating cancers (e.g., immunotherapies). This volume will therefore serve as a vital reference for all cancer biologists as well as anyone seeking to improve clinical outcomes for patients with cancer.


Next Steps for Functional Genomics

Next Steps for Functional Genomics

Author: National Academies of Sciences, Engineering, and Medicine

Publisher: National Academies Press

Published: 2020-12-18

Total Pages: 201

ISBN-13: 0309676738

DOWNLOAD EBOOK

One of the holy grails in biology is the ability to predict functional characteristics from an organism's genetic sequence. Despite decades of research since the first sequencing of an organism in 1995, scientists still do not understand exactly how the information in genes is converted into an organism's phenotype, its physical characteristics. Functional genomics attempts to make use of the vast wealth of data from "-omics" screens and projects to describe gene and protein functions and interactions. A February 2020 workshop was held to determine research needs to advance the field of functional genomics over the next 10-20 years. Speakers and participants discussed goals, strategies, and technical needs to allow functional genomics to contribute to the advancement of basic knowledge and its applications that would benefit society. This publication summarizes the presentations and discussions from the workshop.


Whole Genome Amplification

Whole Genome Amplification

Author: Simon Hughes

Publisher: Methods Express (Paperback)

Published: 2005

Total Pages: 224

ISBN-13:

DOWNLOAD EBOOK

Whole genome amplification generates microgram quantities of genomic DNA starting from a sample of as little as a few femtograms and so is a vital technique when sample material is limited, as well as for high-throughput assays. Whole Genome Amplification: Methods Expressis a comprehensive up-to-date laboratory manual for this key technique. It provides detailed step-by-step protocols as well as hints and tips for success and troubleshooting, taking readers through all aspects of whole genome amplification. This book is an essential practical guide for any researcher currently using PCR for genomic amplification or who wishes to do so in future.