Advanced Applications in Manufacturing Engineering presents the latest research and development in manufacturing engineering across a range of areas, treating manufacturing engineering on an international and transnational scale. It considers various tools, techniques, strategies and methods in manufacturing engineering applications. With the latest knowledge in technology for engineering design and manufacture, this book provides systematic and comprehensive coverage on a topic that is a key driver in rapid economic development, and that can lead to economic benefits and improvements to quality of life on a large-scale. - Presents the latest research and developments in manufacturing engineering - Covers a comprehensive spread of manufacturing engineering areas for different tasks - Discusses tools, techniques, strategies and methods in manufacturing engineering applications - Considers manufacturing engineering at an international and transnational scale - Enables the reader to learn advanced applications in manufacturing engineering
The numerical simulation of sheet metal forming processes has become an indispensable tool for the design of components and their forming processes. This role was attained due to the huge impact in reducing time to market and the cost of developing new components in industries ranging from automotive to packing, as well as enabling an improved understanding of the deformation mechanisms and their interaction with process parameters. Despite being a consolidated tool, its potential for application continues to be discovered with the continuous need to simulate more complex processes, including the integration of the various processes involved in the production of a sheet metal component and the analysis of in-service behavior. The quest for more robust and sustainable processes has also changed its deterministic character into stochastic to be able to consider the scatter in mechanical properties induced by previous manufacturing processes. Faced with these challenges, this Special Issue presents scientific advances in the development of numerical tools that improve the prediction results for conventional forming process, enable the development of new forming processes, or contribute to the integration of several manufacturing processes, highlighting the growing multidisciplinary characteristic of this field.
This volume highlights the latest advances, innovations, and applications in the field of metal forming, as presented by leading international researchers and engineers at the 14th International Conference on Technology of Plasticity (ICTP), held in Mandelieu-La Napoule, France on September 24-29, 2023. It covers a diverse range of topics such as manufacturing processes & equipment, materials behavior and characterization, microstructure design by forming, surfaces & interfaces, control & optimization, green / sustainable metal forming technologies, digitalization & AI in metal forming, multi-material processing, agile / flexible metal forming processes, forming of non-metallic materials, micro-forming and luxury applications. The contributions, which were selected by means of a rigorous international peer-review process, present a wealth of exciting ideas that will open novel research directions and foster multidisciplinary collaboration among different specialists.
With its discussion of strategies for modeling complex materials using new numerical techniques, mainly those based on the finite element method, this monograph covers a range of topics including computational plasticity, multi-scale formulations, optimization and parameter identification, damage mechanics and nonlinear finite elements.
The aim of this major reference work is to provide a first point of entry to the literature for the researchers in any field relating to structural integrity in the form of a definitive research/reference tool which links the various sub-disciplines that comprise the whole of structural integrity. Special emphasis will be given to the interaction between mechanics and materials and structural integrity applications. Because of the interdisciplinary and applied nature of the work, it will be of interest to mechanical engineers and materials scientists from both academic and industrial backgrounds including bioengineering, interface engineering and nanotechnology. The scope of this work encompasses, but is not restricted to: fracture mechanics, fatigue, creep, materials, dynamics, environmental degradation, numerical methods, failure mechanisms and damage mechanics, interfacial fracture and nano-technology, structural analysis, surface behaviour and heart valves. The structures under consideration include: pressure vessels and piping, off-shore structures, gas installations and pipelines, chemical plants, aircraft, railways, bridges, plates and shells, electronic circuits, interfaces, nanotechnology, artificial organs, biomaterial prostheses, cast structures, mining... and more. Case studies will form an integral part of the work.
Provides thorough coverage of essential concepts and state-of-the-art developments in the field Meshfree and Particle Methods is the first book of its kind to combine comprehensive, up-to-date information on the fundamental theories and applications of meshfree methods with systematic guidance on practical coding implementation. Broad in scope and content, this unique volume provides readers with the knowledge necessary to perform research and solve challenging problems in nearly all fields of science and engineering using meshfree computational techniques. The authors provide detailed descriptions of essential issues in meshfree methods, as well as specific techniques to address them, while discussing a wide range of subjects and use cases. Topics include approximations in meshfree methods, nonlinear meshfree methods, essential boundary condition enforcement, quadrature in meshfree methods, strong form collocation methods, and more. Throughout the book, topics are integrated with descriptions of computer implementation and an open-source code (with a dedicated chapter for users) to illustrate the connection between the formulations discussed in the text and their real-world implementation and application. This authoritative resource: Explains the fundamentals of meshfree methods, their constructions, and their unique capabilities as compared to traditional methods Features an overview of the open-source meshfree code RKPM2D, including code and numerical examples Describes all the variational concepts required to solve scientific and engineering problems using meshfree methods such as Nitsche’s method and the Lagrange multiplier method Includes comprehensive reviews of essential boundary condition enforcement, quadrature in meshfree methods, and nonlinear aspects of meshfree analysis Discusses other Galerkin meshfree methods, strong form meshfree methods, and their comparisons Meshfree and Particle Methods: Fundamentals and Applications is the perfect introduction to meshfree methods for upper-level students in advanced numerical analysis courses, and is an invaluable reference for professionals in mechanical, aerospace, civil, and structural engineering, and related fields, who want to understand and apply these concepts directly, or effectively use commercial and other production meshfree and particle codes in their work.
The European Community on Computational Methods in Applied Science (ECCOMAS) has been created with the aim of providing a co-ordination of international scientific conferences and other activities in the field of computational methods in applied sciences. The main objective of the joint conferences on computational fluid dynamics and numerical methods in engineering is to provide a common forum for the presentation and discussion of scientific computing applied to engineering sciences. Equal emphasis is to be given to basic methodologies, scientific developments and industrial applications. These conferences are presented in three volumes. Volume one, Computational Fluid Dynamics '96, covers the proceedings of the Third ECCOMAS Conference on Computational Fluid Dynamics; Volume two, Numerical Methods in Engineering '96, covers the proceedings of the second ECCOMAS Conference on Numerical Methods in Engineering; and Volume three, Computational Methods in Applied Sciences '96, which presents invited lectures and special technical sessions of both the Third ECCOMAS Computational Fluid Dynamics Conference and the Second ECCOMAS Conference on Numerical Methods in Engineering.