Similitude and Modelling

Similitude and Modelling

Author: E. Szücs

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 336

ISBN-13: 0080983782

DOWNLOAD EBOOK

Similitude and Modeling describes the theoretical aspects and application of similitude method using mathematical apparatus. This book is organized into two parts encompassing 13 chapters, and begins with an introduction to a simple technological problem in similitude modeling. The first part deals with the concept, physical fundamentals, dimensional analysis, and approximate and partial modeling of similitude. This part explores also the preparation and evaluation of similitude experiments, as well as the general types of similitude invariants. The second part highlights the application areas of similitude modeling, including heat conduction and diffusion, fluid dynamics, elastic deformation, and chemical reactions. This book will prove useful to plant and design engineers.


Similarity and Modeling in Science and Engineering

Similarity and Modeling in Science and Engineering

Author: Josef Kuneš

Publisher: Springer Science & Business Media

Published: 2012-04-07

Total Pages: 451

ISBN-13: 1907343776

DOWNLOAD EBOOK

The present text sets itself in relief to other titles on the subject in that it addresses the means and methodologies versus a narrow specific-task oriented approach. Concepts and their developments which evolved to meet the changing needs of applications are addressed. This approach provides the reader with a general tool-box to apply to their specific needs. Two important tools are presented: dimensional analysis and the similarity analysis methods. The fundamental point of view, enabling one to sort all models, is that of information flux between a model and an original expressed by the similarity and abstraction Each chapter includes original examples and applications. In this respect, the models can be divided into several groups. The following models are dealt with separately by chapter; mathematical and physical models, physical analogues, deterministic, stochastic, and cybernetic computer models. The mathematical models are divided into asymptotic and phenomenological models. The phenomenological models, which can also be called experimental, are usually the result of an experiment on an complex object or process. The variable dimensionless quantities contain information about the real state of boundary conditions, parameter (non-linearity) changes, and other factors. With satisfactory measurement accuracy and experimental strategy, such models are highly credible and can be used, for example in control systems.


Physical Models and Laboratory Techniques in Coastal Engineering

Physical Models and Laboratory Techniques in Coastal Engineering

Author: Steven A. Hughes

Publisher: World Scientific

Published: 1993

Total Pages: 592

ISBN-13: 9789810215415

DOWNLOAD EBOOK

Laboratory physical models are a valuable tool for coastal engineers. Physical models help us to understand the complex hydrodynamic processes occurring in the nearshore zone and they provide reliable and economic engineering design solutions.This book is about the art and science of physical modeling as applied in coastal engineering. The aim of the book is to consolidate and synthesize into a single text much of the knowledge about physical modeling that has been developed worldwide.This book was written to serve as a graduate-level text for a course in physical modeling or as a reference text for engineers and researchers engaged in physical modeling and laboratory experimentation. The first three chapters serve as an introduction to similitude and physical models, covering topics such as advantages and disadvantages of physical models, systems of units, dimensional analysis, types of similitude and various hydraulic similitude criteria applicable to coastal engineering models.Practical application of similitude principles to coastal engineering studies is covered in Chapter 4 (Hydrodynamic Models), Chapter 5 (Coastal Structure Models) and Chapter 6 (Sediment Transport Models). These chapters develop the appropriate similitude criteria, discuss inherent laboratory and scale effects and overview the technical literature pertaining to these types of models. The final two chapters focus on the related subjects of laboratory wave generation (Chapter 7) and measurement and analysis techniques (Chapter 8).


Chemical Engineering

Chemical Engineering

Author: Tanase Gh. Dobre

Publisher: John Wiley & Sons

Published: 2007-06-18

Total Pages: 571

ISBN-13: 3527306072

DOWNLOAD EBOOK

A description of the use of computer aided modeling and simulation in the development, integration and optimization of industrial processes. The two authors elucidate the entire procedure step-by-step, from basic mathematical modeling to result interpretation and full-scale process performance analysis. They further demonstrate similitude comparisons of experimental results from different systems as a tool for broadening the applicability of the calculation methods. Throughout, the book adopts a very practical approach, addressing actual problems and projects likely to be encountered by the reader, as well as fundamentals and solution strategies for complex problems. It is thus equally useful for student and professional engineers and chemists involved in industrial process and production plant design, construction or upgrading.


Fundamentals of Ship Hydrodynamics

Fundamentals of Ship Hydrodynamics

Author: Lothar Birk

Publisher: John Wiley & Sons

Published: 2019-04-25

Total Pages: 876

ISBN-13: 1118855515

DOWNLOAD EBOOK

Fundamentals of Ship Hydrodynamics: Fluid Mechanics, Ship Resistance and Propulsion Lothar Birk, University of New Orleans, USA Bridging the information gap between fluid mechanics and ship hydrodynamics Fundamentals of Ship Hydrodynamics is designed as a textbook for undergraduate education in ship resistance and propulsion. The book provides connections between basic training in calculus and fluid mechanics and the application of hydrodynamics in daily ship design practice. Based on a foundation in fluid mechanics, the origin, use, and limitations of experimental and computational procedures for resistance and propulsion estimates are explained. The book is subdivided into sixty chapters, providing background material for individual lectures. The unabridged treatment of equations and the extensive use of figures and examples enable students to study details at their own pace. Key features: • Covers the range from basic fluid mechanics to applied ship hydrodynamics. • Subdivided into 60 succinct chapters. • In-depth coverage of material enables self-study. • Around 250 figures and tables. Fundamentals of Ship Hydrodynamics is essential reading for students and staff of naval architecture, ocean engineering, and applied physics. The book is also useful for practicing naval architects and engineers who wish to brush up on the basics, prepare for a licensing exam, or expand their knowledge.


Similitude and Approximation Theory

Similitude and Approximation Theory

Author: S.J. Kline

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 246

ISBN-13: 3642616380

DOWNLOAD EBOOK

There are a number of reasons for producing this edition of Simili tude and Approximation Theory. The methodologies developed remain important in many areas of technical work. No other equivalent work has appeared in the two decades since the publication of the first edition. The materials still provide an important increase in understanding for first-year graduate students in engineering and for workers in research and development at an equivalent level. In addition, consulting experiences in a number of industries indi cate that many technical workers in research and development lack knowledge of the methodologies given in this work. This lack makes the work of planning and controlling computations and experiments less efficient in many cases. It also implies that the coordinated grasp of the phenomena (which is so critical to effective research and develop ment work) will be less than it might be. The materials covered in this work focus on the relationship between mathematical models and the physical reality such models are intended v vi Preface to the Springer Edition to portray. Understanding these relationships remains a key factor in simplifying and generalizing correlations, predictions, test programs, and computations. Moreover, as many teachers of engineering know, this kind of understanding is typically harder for students to develop than an understanding of either the mathematics or the physics alone.


River Mechanics

River Mechanics

Author: Pierre Y. Julien

Publisher: Cambridge University Press

Published: 2018-04-12

Total Pages: 527

ISBN-13: 1107462770

DOWNLOAD EBOOK

Completely updated and with three new chapters, this analysis of river dynamics is invaluable for advanced students, researchers and practitioners.


Dimensional Analysis and Self-Similarity Methods for Engineers and Scientists

Dimensional Analysis and Self-Similarity Methods for Engineers and Scientists

Author: Bahman Zohuri

Publisher: Springer

Published: 2015-04-15

Total Pages: 379

ISBN-13: 3319134760

DOWNLOAD EBOOK

This ground-breaking reference provides an overview of key concepts in dimensional analysis, and then pushes well beyond traditional applications in fluid mechanics to demonstrate how powerful this tool can be in solving complex problems across many diverse fields. Of particular interest is the book’s coverage of dimensional analysis and self-similarity methods in nuclear and energy engineering. Numerous practical examples of dimensional problems are presented throughout, allowing readers to link the book’s theoretical explanations and step-by-step mathematical solutions to practical implementations.


Structural Modeling and Experimental Techniques, Second Edition

Structural Modeling and Experimental Techniques, Second Edition

Author: Harry G. Harris

Publisher: CRC Press

Published: 1999-03-30

Total Pages: 806

ISBN-13: 9781420049589

DOWNLOAD EBOOK

Structural Modeling and Experimental Techniques presents a current treatment of structural modeling for applications in design, research, education, and product development. Providing numerous case studies throughout, the book emphasizes modeling the behavior of reinforced and prestressed concrete and masonry structures. Structural Modeling and Experimental Techniques: Concentrates on the modeling of the true inelastic behavior of structures Provides case histories detailing applications of the modeling techniques to real structures Discusses the historical background of model analysis and similitude principles governing the design, testing, and interpretation of models Evaluates the limitations and benefits of elastic models Analyzes materials for reinforced concrete masonry and steel models Assesses the critical nature of scale effects of model testing Describes selected laboratory techniques and loading methods Contains material on errors as well as the accuracy and reliability of physical modeling Examines dynamic similitude and modeling techniques for studying dynamic loading of structures Covers actual applications of structural modeling This book serves students in model analysis and experimental methods, professionals manufacturing and testing structural models, as well as professionals testing large or full-scale structures - since the instrumentation techniques and overall approaches for testing large structures are very similar to those used in small-scale modeling work.


Dimensional Analysis and Similarity in Fluid Mechanics

Dimensional Analysis and Similarity in Fluid Mechanics

Author: Nord-Eddine Sad Chemloul

Publisher: John Wiley & Sons

Published: 2020-11-03

Total Pages: 240

ISBN-13: 1119788021

DOWNLOAD EBOOK

Dimensional analysis is the basis for the determination of laws that allow the experimental results obtained on a model to be transposed to the fluid system at full scale (a prototype). The similarity in fluid mechanics then allows for better redefinition of the analysis by removing dimensionless elements. This book deals with these two tools, with a focus on the Rayleigh method and the Vaschy-Buckingham method. It deals with the homogeneity of the equations and the conversion between the systems of units SI and CGS, and presents the dimensional analysis approach, before addressing the similarity of flows. Dimensional Analysis and Similarity in Fluid Mechanics proposes a scale model and presents numerous exercises combining these two methods. It is accessible to students from their first year of a bachelorÂs degree.