Similarity and Symmetry Methods

Similarity and Symmetry Methods

Author: Jean-François Ganghoffer

Publisher: Springer

Published: 2014-07-19

Total Pages: 380

ISBN-13: 3319082965

DOWNLOAD EBOOK

The principle aim of the book is to present a self-contained, modern account of similarity and symmetry methods, which are important mathematical tools for both physicists, engineers and applied mathematicians. The idea is to provide a balanced presentation of the mathematical techniques and applications of symmetry methods in mathematics, physics and engineering. That is why it includes recent developments and many examples in finding systematically conservation laws, local and nonlocal symmetries for ordinary and partial differential equations. The role of continuous symmetries in classical and quantum field theories is exposed at a technical level accessible even for non specialists. The importance of symmetries in continuum mechanics and mechanics of materials is highlighted through recent developments, such as the construction of constitutive models for various materials combining Lie symmetries with experimental data. As a whole this book is a unique collection of contributions from experts in the field, including specialists in the mathematical treatment of symmetries, researchers using symmetries from a fundamental, applied or numerical viewpoint. The book is a fascinating overview of symmetry methods aimed for graduate students in physics, mathematics and engineering, as well as researchers either willing to enter in the field or to capture recent developments and applications of symmetry methods in different scientific fields.


Applications of Symmetry Methods to Partial Differential Equations

Applications of Symmetry Methods to Partial Differential Equations

Author: George W. Bluman

Publisher: Springer Science & Business Media

Published: 2009-10-30

Total Pages: 415

ISBN-13: 0387680284

DOWNLOAD EBOOK

This is an acessible book on the advanced symmetry methods for differential equations, including such subjects as conservation laws, Lie-Bäcklund symmetries, contact transformations, adjoint symmetries, Nöther's Theorem, mappings with some modification, potential symmetries, nonlocal symmetries, nonlocal mappings, and non-classical method. Of use to graduate students and researchers in mathematics and physics.


Symmetry Methods for Differential Equations

Symmetry Methods for Differential Equations

Author: Peter Ellsworth Hydon

Publisher: Cambridge University Press

Published: 2000-01-28

Total Pages: 230

ISBN-13: 9780521497862

DOWNLOAD EBOOK

This book is a straightforward introduction to the subject of symmetry methods for solving differential equations, and is aimed at applied mathematicians, physicists, and engineers. The presentation is informal, using many worked examples to illustrate the main symmetry methods. It is written at a level suitable for postgraduates and advanced undergraduates, and is designed to enable the reader to master the main techniques quickly and easily.The book contains some methods that have not previously appeared in a text. These include methods for obtaining discrete symmetries and integrating factors.


Physics from Symmetry

Physics from Symmetry

Author: Jakob Schwichtenberg

Publisher: Springer

Published: 2017-12-01

Total Pages: 294

ISBN-13: 3319666312

DOWNLOAD EBOOK

This is a textbook that derives the fundamental theories of physics from symmetry. It starts by introducing, in a completely self-contained way, all mathematical tools needed to use symmetry ideas in physics. Thereafter, these tools are put into action and by using symmetry constraints, the fundamental equations of Quantum Mechanics, Quantum Field Theory, Electromagnetism, and Classical Mechanics are derived. As a result, the reader is able to understand the basic assumptions behind, and the connections between the modern theories of physics. The book concludes with first applications of the previously derived equations. Thanks to the input of readers from around the world, this second edition has been purged of typographical errors and also contains several revised sections with improved explanations.


Symmetry and Integration Methods for Differential Equations

Symmetry and Integration Methods for Differential Equations

Author: George Bluman

Publisher: Springer Science & Business Media

Published: 2008-01-10

Total Pages: 425

ISBN-13: 0387216499

DOWNLOAD EBOOK

This text discusses Lie groups of transformations and basic symmetry methods for solving ordinary and partial differential equations. It places emphasis on explicit computational algorithms to discover symmetries admitted by differential equations and to construct solutions resulting from symmetries. This new edition covers contact transformations, Lie-B cklund transformations, and adjoints and integrating factors for ODEs of arbitrary order.


Symmetries and Differential Equations

Symmetries and Differential Equations

Author: George W. Bluman

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 424

ISBN-13: 1475743076

DOWNLOAD EBOOK

A major portion of this book discusses work which has appeared since the publication of the book Similarity Methods for Differential Equations, Springer-Verlag, 1974, by the first author and J.D. Cole. The present book also includes a thorough and comprehensive treatment of Lie groups of tranformations and their various uses for solving ordinary and partial differential equations. No knowledge of group theory is assumed. Emphasis is placed on explicit computational algorithms to discover symmetries admitted by differential equations and to construct solutions resulting from symmetries. This book should be particularly suitable for physicists, applied mathematicians, and engineers. Almost all of the examples are taken from physical and engineering problems including those concerned with heat conduction, wave propagation, and fluid flows. A preliminary version was used as lecture notes for a two-semester course taught by the first author at the University of British Columbia in 1987-88 to graduate and senior undergraduate students in applied mathematics and physics. Chapters 1 to 4 encompass basic material. More specialized topics are covered in Chapters 5 to 7.


Symmetry, Ornament and Modularity

Symmetry, Ornament and Modularity

Author: Slavik V. Jablan

Publisher: World Scientific

Published: 2002

Total Pages: 354

ISBN-13: 9789812380807

DOWNLOAD EBOOK

This book discusses the origins of ornamental art -- illustrated by the oldest examples, dating mostly from the paleolithic and neolithic ages, and considered from the theory-of-symmetry point of view. Because of its multidisciplinary nature, it will interest a wide range of readers: mathematicians, artists, art historians, architects, psychologists, and anthropologists. The book represents the complete analysis of plane symmetry structures, so it can be used by artists as a guide to the creation of new symmetry patterns. Some parts of the contents (such as Chapter 4, about conformal symmetry, and Chapter 6, about modularity in art) give the reader an opportunity to develop computer programs for producing images illustrating the corresponding symmetry forms.


Applications of Lie Groups to Differential Equations

Applications of Lie Groups to Differential Equations

Author: Peter J. Olver

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 524

ISBN-13: 1468402749

DOWNLOAD EBOOK

This book is devoted to explaining a wide range of applications of con tinuous symmetry groups to physically important systems of differential equations. Emphasis is placed on significant applications of group-theoretic methods, organized so that the applied reader can readily learn the basic computational techniques required for genuine physical problems. The first chapter collects together (but does not prove) those aspects of Lie group theory which are of importance to differential equations. Applications covered in the body of the book include calculation of symmetry groups of differential equations, integration of ordinary differential equations, including special techniques for Euler-Lagrange equations or Hamiltonian systems, differential invariants and construction of equations with pre scribed symmetry groups, group-invariant solutions of partial differential equations, dimensional analysis, and the connections between conservation laws and symmetry groups. Generalizations of the basic symmetry group concept, and applications to conservation laws, integrability conditions, completely integrable systems and soliton equations, and bi-Hamiltonian systems are covered in detail. The exposition is reasonably self-contained, and supplemented by numerous examples of direct physical importance, chosen from classical mechanics, fluid mechanics, elasticity and other applied areas.


Similarity Search

Similarity Search

Author: Pavel Zezula

Publisher: Springer Science & Business Media

Published: 2006-06-07

Total Pages: 227

ISBN-13: 0387291512

DOWNLOAD EBOOK

The area of similarity searching is a very hot topic for both research and c- mercial applications. Current data processing applications use data with c- siderably less structure and much less precise queries than traditional database systems. Examples are multimedia data like images or videos that offer query by example search, product catalogs that provide users with preference based search, scientific data records from observations or experimental analyses such as biochemical and medical data, or XML documents that come from hetero- neous data sources on the Web or in intranets and thus does not exhibit a global schema. Such data can neither be ordered in a canonical manner nor meani- fully searched by precise database queries that would return exact matches. This novel situation is what has given rise to similarity searching, also - ferred to as content based or similarity retrieval. The most general approach to similarity search, still allowing construction of index structures, is modeled in metric space. In this book. Prof. Zezula and his co authors provide the first monograph on this topic, describing its theoretical background as well as the practical search tools of this innovative technology.