Formulation and Numerical Solution of Quantum Control Problems

Formulation and Numerical Solution of Quantum Control Problems

Author: Alfio Borzi

Publisher: SIAM

Published: 2017-07-06

Total Pages: 396

ISBN-13: 1611974844

DOWNLOAD EBOOK

This book provides an introduction to representative nonrelativistic quantum control problems and their theoretical analysis and solution via modern computational techniques. The quantum theory framework is based on the Schr?dinger picture, and the optimization theory, which focuses on functional spaces, is based on the Lagrange formalism. The computational techniques represent recent developments that have resulted from combining modern numerical techniques for quantum evolutionary equations with sophisticated optimization schemes. Both finite and infinite-dimensional models are discussed, including the three-level Lambda system arising in quantum optics, multispin systems in NMR, a charged particle in a well potential, Bose?Einstein condensates, multiparticle spin systems, and multiparticle models in the time-dependent density functional framework. This self-contained book covers the formulation, analysis, and numerical solution of quantum control problems and bridges scientific computing, optimal control and exact controllability, optimization with differential models, and the sciences and engineering that require quantum control methods.


Primer on Optimal Control Theory

Primer on Optimal Control Theory

Author: Jason L. Speyer

Publisher: SIAM

Published: 2010-05-13

Total Pages: 316

ISBN-13: 0898716942

DOWNLOAD EBOOK

A rigorous introduction to optimal control theory, which will enable engineers and scientists to put the theory into practice.


Advanced and Optimization Based Sliding Mode Control: Theory and Applications

Advanced and Optimization Based Sliding Mode Control: Theory and Applications

Author: Antonella Ferrara

Publisher: SIAM

Published: 2019-07-01

Total Pages: 302

ISBN-13: 1611975840

DOWNLOAD EBOOK

A compendium of the authors’ recently published results, this book discusses sliding mode control of uncertain nonlinear systems, with a particular emphasis on advanced and optimization based algorithms. The authors survey classical sliding mode control theory and introduce four new methods of advanced sliding mode control. They analyze classical theory and advanced algorithms, with numerical results complementing the theoretical treatment. Case studies examine applications of the algorithms to complex robotics and power grid problems. Advanced and Optimization Based Sliding Mode Control: Theory and Applications is the first book to systematize the theory of optimization based higher order sliding mode control and illustrate advanced algorithms and their applications to real problems. It presents systematic treatment of event-triggered and model based event-triggered sliding mode control schemes, including schemes in combination with model predictive control, and presents adaptive algorithms as well as algorithms capable of dealing with state and input constraints. Additionally, the book includes simulations and experimental results obtained by applying the presented control strategies to real complex systems. This book is suitable for students and researchers interested in control theory. It will also be attractive to practitioners interested in implementing the illustrated strategies. It is accessible to anyone with a basic knowledge of control engineering, process physics, and applied mathematics.


Parameterized Algorithms

Parameterized Algorithms

Author: Marek Cygan

Publisher: Springer

Published: 2015-07-20

Total Pages: 618

ISBN-13: 3319212753

DOWNLOAD EBOOK

This comprehensive textbook presents a clean and coherent account of most fundamental tools and techniques in Parameterized Algorithms and is a self-contained guide to the area. The book covers many of the recent developments of the field, including application of important separators, branching based on linear programming, Cut & Count to obtain faster algorithms on tree decompositions, algorithms based on representative families of matroids, and use of the Strong Exponential Time Hypothesis. A number of older results are revisited and explained in a modern and didactic way. The book provides a toolbox of algorithmic techniques. Part I is an overview of basic techniques, each chapter discussing a certain algorithmic paradigm. The material covered in this part can be used for an introductory course on fixed-parameter tractability. Part II discusses more advanced and specialized algorithmic ideas, bringing the reader to the cutting edge of current research. Part III presents complexity results and lower bounds, giving negative evidence by way of W[1]-hardness, the Exponential Time Hypothesis, and kernelization lower bounds. All the results and concepts are introduced at a level accessible to graduate students and advanced undergraduate students. Every chapter is accompanied by exercises, many with hints, while the bibliographic notes point to original publications and related work.


Multiscale Modelling and Simulation

Multiscale Modelling and Simulation

Author: Sabine Attinger

Publisher: Springer Science & Business Media

Published: 2004-07-12

Total Pages: 304

ISBN-13: 9783540211808

DOWNLOAD EBOOK

In August 2003, ETHZ Computational Laboratory (CoLab), together with the Swiss Center for Scientific Computing in Manno and the Università della Svizzera Italiana (USI), organized the Summer School in "Multiscale Modelling and Simulation" in Lugano, Switzerland. This summer school brought together experts in different disciplines to exchange ideas on how to link methodologies on different scales. Relevant examples of practical interest include: structural analysis of materials, flow through porous media, turbulent transport in high Reynolds number flows, large-scale molecular dynamic simulations, ab-initio physics and chemistry, and a multitude of others. Though multiple scale models are not new, the topic has recently taken on a new sense of urgency. A number of hybrid approaches are now created in which ideas coming from distinct disciplines or modelling approaches are unified to produce new and computationally efficient techniques.


Arc Routing

Arc Routing

Author: Angel Corberan

Publisher: SIAM

Published: 2015-01-01

Total Pages: 404

ISBN-13: 1611973678

DOWNLOAD EBOOK

This book provides a thorough and up-to-date discussion of arc routing by world-renowned researchers. Organized by problem type, the book offers a rigorous treatment of complexity issues, models, algorithms, and applications. Arc Routing: Problems, Methods, and Applications opens with a historical perspective of the field and is followed by three sections that cover complexity and the Chinese Postman and the Rural Postman problems; the Capacitated Arc Routing Problem and routing problems with min-max and profit maximization objectives; and important applications, including meter reading, snow removal, and waste collection.