Shock Wave Interaction with a Fluid Filled Cylinder Experimental Methods

Shock Wave Interaction with a Fluid Filled Cylinder Experimental Methods

Author: Praveen Kumar Baba Siddabattuni

Publisher:

Published: 2016

Total Pages: 46

ISBN-13:

DOWNLOAD EBOOK

In the recent wars of Iraq and Afghanistan, many soldiers sustained bTBI (blast-induced traumatic brain injury). The blasts are created by extensive use of improvised explosive devices (IED’s). Whether pure blast-shock waves cause TBI or what is the mechanism of injury are not fully known. Research efforts are underway to find answers to these questions. The primary objective of this project is to understand how the shockwave interacts with a fluid-filled cylinder of different thicknesses. Here, the cylinder is idealized as head and the fluid filled inside it as the brain material. The primary interest here is, how the pure shockwave behaves when a cylinder is exposed to different incident blast over-pressures. The question raised in this work is whether primary blast wave causes for TBI? The pressure response inside the cylinder and the deformations for different thicknesses exposing at different blast loadings are taken into account in answering this question. Polycarbonate is chosen to simulate human skull. De-ionized water is used as the fluid as its mechanical property is close to that of brain. As the human head varies in thickness from 4mm in the temporal region to 8mm in the occipital region of the skull, two different thickness polycarbonate cylinders have been used to mimic that variation. All the experiments are done in the blast tube where the shockwaves are produced in the test section. Pure shock wave due to explosives in free field conditions will have a Friedlander wave form which will be artificially generated in 9 inch shock tube. High speed cameras are used for capturing motion of the cylinder during shock loading. Two different pressures 20 psi (140 kPa) and 30 psi (210 kPa) are used as the peak blast overpressures with two different thickness 1.9 and 3.3mm and diameter of the cylinder is 50mm. Pressure in the fluid is measured at three different locations whereas strain gages measure deformations at three sites. Analysis of data indicate that the pressure in the fluid is affected by not only the external pressure but also thickness of the cylinder. Thus, the pressure is affected by both direct transmission as well as cylinder deformation.


Experimental Methods of Shock Wave Research

Experimental Methods of Shock Wave Research

Author: Ozer Igra

Publisher: Springer

Published: 2015-10-31

Total Pages: 480

ISBN-13: 3319237454

DOWNLOAD EBOOK

This comprehensive and carefully edited volume presents a variety of experimental methods used in Shock Waves research. In 14 self contained chapters this 9th volume of the “Shock Wave Science and Technology Reference Library” presents the experimental methods used in Shock Tubes, Shock Tunnels and Expansion Tubes facilities. Also described is their set-up and operation. The uses of an arc heated wind tunnel and a gun tunnel are also contained in this volume. Whenever possible, in addition to the technical description some typical scientific results obtained using such facilities are described. Additionally, this authoritative book includes techniques for measuring physical properties of blast waves and laser generated shock waves. Information about active shock wave laboratories at different locations around the world that are not described in the chapters herein is given in the Appendix, making this book useful for every researcher involved in shock/blast wave phenomena.


Shock Dynamics

Shock Dynamics

Author: Z. Han

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 331

ISBN-13: 9401729956

DOWNLOAD EBOOK

This book was written as a graduate student course--Shock Dynamics. Up to now, the first author has taught this course to the graduate students in the field of Fluid Mechanics, Department of Modern Mechanics, University of Science and Technology of China for seven times. In the spring semester 1989, during his visit to the United States, the first author taught this course to the graduate students of Department of Mathemat ics, University of Colorado at Denver. At the same time, he gave a series of four lectures on Shock Dynamics to the graduate students of Department of Aerospace Engineering Sciences, University of Colorado at Boulder. In 1991, during the first author's visit to Japan, he gave some lectures on Shock Dynamics in Tohoku University, University of Tokyo and Kyushu Uni versity. The dynamic phenomena of shock waves such as propagation, diffraction, reflection, refraction and interaction of shock waves may be studied by using experimental methods, numerical calculations and theoretical analyses. Although the detailed flow patterns of phenomena of shock motion can be obtained by using experimental methods and numerical calculations of solving Euler Equation or Navier-Stokes Equation, for example, the diffractions of shock waves by wedges form various phenomena of reflection--RR, SMR, CMR and DMR, we also need to analyse the process of the formation of shock waves in various phenomena of diffraction, reflection and interaction by using theoretical methods.


Interaction of Shock Waves

Interaction of Shock Waves

Author: R. S. Srivastava

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 329

ISBN-13: 9401110867

DOWNLOAD EBOOK

One of the great twentieth-century achievements in the mechanics of fluids was the full elucidation of the physics of shock waves and the later comprehensive development of understanding of how shock waves propagate (i) through otherwise undisturbed fluid and (ii) in interaction either with solid bodies or with independently generated fluid flows. The interaction problems (ii) were soon found to raise some very special difficulties (beginning with the common formation of "Mach stems" in shock-wave reflection) yet they also turned out to possess enormous scientific interest as well as being highly important in practical applications. For all these reasons the appearance of this book on "Interaction of Shock Waves" by one of the world's major contributors to knowledge in that field is most particularly to be welcomed. It covers all those approaches to the subject which have been found fruitful, and most satisfactorily goes into comprehensive detail about each. At last the important achievements of the leading research workers, experimental as well as theoretical, on shockwave interaction problems are brought together in a single convenient and well written volume. I warmly congratulate the author and the publisher on having performed, for the benefit of everyone interested in the mechanics of fluids, this immensely valuable service.


Shock Wave-Boundary-Layer Interactions

Shock Wave-Boundary-Layer Interactions

Author: Holger Babinsky

Publisher: Cambridge University Press

Published: 2011-09-12

Total Pages: 481

ISBN-13: 1139498649

DOWNLOAD EBOOK

Shock wave-boundary-layer interaction (SBLI) is a fundamental phenomenon in gas dynamics that is observed in many practical situations, ranging from transonic aircraft wings to hypersonic vehicles and engines. SBLIs have the potential to pose serious problems in a flowfield; hence they often prove to be a critical - or even design limiting - issue for many aerospace applications. This is the first book devoted solely to a comprehensive, state-of-the-art explanation of this phenomenon. It includes a description of the basic fluid mechanics of SBLIs plus contributions from leading international experts who share their insight into their physics and the impact they have in practical flow situations. This book is for practitioners and graduate students in aerodynamics who wish to familiarize themselves with all aspects of SBLI flows. It is a valuable resource for specialists because it compiles experimental, computational and theoretical knowledge in one place.


Unsteady Effects of Shock Wave induced Separation

Unsteady Effects of Shock Wave induced Separation

Author: Piotr Doerffer

Publisher: Springer Science & Business Media

Published: 2010-11-25

Total Pages: 350

ISBN-13: 3642030041

DOWNLOAD EBOOK

This volume contains description of experimental and numerical results obtained in the UFAST project. The goal of the project was to generate experiment data bank providing unsteady characteristics of the shock boundary layer interaction. The experiments concerned basic-reference cases and the cases with application of flow control devices. Obtained new data bank have been used for the comparison with available simulation techniques, starting from RANS, through URANS, LES and hybrid RANS-LES methods. New understanding of flow physics as well as ability of different numerical methods in the prediction of such unsteady flow phenomena will be discussed.


Visualization of Shock Wave Phenomena

Visualization of Shock Wave Phenomena

Author: Kazuyoshi Takayama

Publisher: Springer

Published: 2019-07-03

Total Pages: 733

ISBN-13: 3030194515

DOWNLOAD EBOOK

This book presents a wealth of images of shock wave phenomena, gathered by the author over the past 40 years. Shadowgrams and interferograms of basic shock-dynamic topics such as reflection, diffraction, refraction, and focusing of shock waves in gases and liquids are sequentially displayed. Though the images themselves are self-explanatory, brief explanations of the experimental conditions are included, so as to facilitate analysis and numerical reproduction of the image data. In addition, the book presents interferometric observations of underwater shock wave/bubble interactions, and highlights the multifaceted applications of shock wave phenomena to medicine and industry. Given its scope, the book offers a unique resource for students and researchers who are interested in shock wave phenomena. However, the content has also been specifically prepared for the benefit of readers who are interested in gas dynamics and medical applications of shock waves, and are looking for reliable experimental images.


28th International Symposium on Shock Waves

28th International Symposium on Shock Waves

Author: Konstantinos Kontis

Publisher: Springer Science & Business Media

Published: 2012-03-14

Total Pages: 860

ISBN-13: 3642256880

DOWNLOAD EBOOK

The University of Manchester hosted the 28th International Symposium on Shock Waves between 17 and 22 July 2011. The International Symposium on Shock Waves first took place in 1957 in Boston and has since become an internationally acclaimed series of meetings for the wider Shock Wave Community. The ISSW28 focused on the following areas: Blast Waves, Chemically Reacting Flows, Dense Gases and Rarefied Flows, Detonation and Combustion, Diagnostics, Facilities, Flow Visualisation, Hypersonic Flow, Ignition, Impact and Compaction, Multiphase Flow, Nozzle Flow, Numerical Methods, Propulsion, Richtmyer-Meshkov, Shockwave Boundary Layer Interaction, Shock Propagation and Reflection, Shock Vortex Interaction, Shockwave Phenomena and Applications, as well as Medical and Biological Applications. The two Volumes contain the papers presented at the symposium and serve as a reference for the participants of the ISSW 28 and individuals interested in these fields.


30th International Symposium on Shock Waves 2

30th International Symposium on Shock Waves 2

Author: Gabi Ben-Dor

Publisher: Springer

Published: 2017-08-01

Total Pages: 681

ISBN-13: 3319448668

DOWNLOAD EBOOK

These proceedings collect the papers presented at the 30th International Symposium on Shock Waves (ISSW30), which was held in Tel-Aviv Israel from July 19 to July 24, 2015. The Symposium was organized by Ortra Ltd. The ISSW30 focused on the state of knowledge of the following areas: Nozzle Flow, Supersonic and Hypersonic Flows with Shocks, Supersonic Jets, Chemical Kinetics, Chemical Reacting Flows, Detonation, Combustion, Ignition, Shock Wave Reflection and Interaction, Shock Wave Interaction with Obstacles, Shock Wave Interaction with Porous Media, Shock Wave Interaction with Granular Media, Shock Wave Interaction with Dusty Media, Plasma, Magnetohyrdrodynamics, Re-entry to Earth Atmosphere, Shock Waves in Rarefied Gases, Shock Waves in Condensed Matter (Solids and Liquids), Shock Waves in Dense Gases, Shock Wave Focusing, Richtmyer-Meshkov Instability, Shock Boundary Layer Interaction, Multiphase Flow, Blast Waves, Facilities, Flow Visualization, and Numerical Methods. The two volumes serve as a reference for the participants of the ISSW30 and anyone interested in these fields.