Sheaves on Manifolds

Sheaves on Manifolds

Author: Masaki Kashiwara

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 522

ISBN-13: 3662026619

DOWNLOAD EBOOK

Sheaf Theory is modern, active field of mathematics at the intersection of algebraic topology, algebraic geometry and partial differential equations. This volume offers a comprehensive and self-contained treatment of Sheaf Theory from the basis up, with emphasis on the microlocal point of view. From the reviews: "Clearly and precisely written, and contains many interesting ideas: it describes a whole, largely new branch of mathematics." –Bulletin of the L.M.S.


Manifolds, Sheaves, and Cohomology

Manifolds, Sheaves, and Cohomology

Author: Torsten Wedhorn

Publisher: Springer

Published: 2016-07-25

Total Pages: 366

ISBN-13: 3658106336

DOWNLOAD EBOOK

This book explains techniques that are essential in almost all branches of modern geometry such as algebraic geometry, complex geometry, or non-archimedian geometry. It uses the most accessible case, real and complex manifolds, as a model. The author especially emphasizes the difference between local and global questions. Cohomology theory of sheaves is introduced and its usage is illustrated by many examples.


Categories and Sheaves

Categories and Sheaves

Author: Masaki Kashiwara

Publisher: Springer Science & Business Media

Published: 2005-12-19

Total Pages: 496

ISBN-13: 3540279504

DOWNLOAD EBOOK

Categories and sheaves appear almost frequently in contemporary advanced mathematics. This book covers categories, homological algebra and sheaves in a systematic manner starting from scratch and continuing with full proofs to the most recent results in the literature, and sometimes beyond. The authors present the general theory of categories and functors, emphasizing inductive and projective limits, tensor categories, representable functors, ind-objects and localization.


Sheaves in Topology

Sheaves in Topology

Author: Alexandru Dimca

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 253

ISBN-13: 3642188680

DOWNLOAD EBOOK

Constructible and perverse sheaves are the algebraic counterpart of the decomposition of a singular space into smooth manifolds. This introduction to the subject can be regarded as a textbook on modern algebraic topology, treating the cohomology of spaces with sheaf (as opposed to constant) coefficients. The author helps readers progress quickly from the basic theory to current research questions, thoroughly supported along the way by examples and exercises.


Geometry of Vector Sheaves

Geometry of Vector Sheaves

Author: Anastasios Mallios

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 457

ISBN-13: 9401150060

DOWNLOAD EBOOK

This two-volume monograph obtains fundamental notions and results of the standard differential geometry of smooth (CINFINITY) manifolds, without using differential calculus. Here, the sheaf-theoretic character is emphasised. This has theoretical advantages such as greater perspective, clarity and unification, but also practical benefits ranging from elementary particle physics, via gauge theories and theoretical cosmology (`differential spaces'), to non-linear PDEs (generalised functions). Thus, more general applications, which are no longer `smooth' in the classical sense, can be coped with. The treatise might also be construed as a new systematic endeavour to confront the ever-increasing notion that the `world around us is far from being smooth enough'. Audience: This work is intended for postgraduate students and researchers whose work involves differential geometry, global analysis, analysis on manifolds, algebraic topology, sheaf theory, cohomology, functional analysis or abstract harmonic analysis.


Global Calculus

Global Calculus

Author: S. Ramanan

Publisher: American Mathematical Soc.

Published: 2005

Total Pages: 330

ISBN-13: 0821837028

DOWNLOAD EBOOK

The power that analysis, topology and algebra bring to geometry has revolutionised the way geometers and physicists look at conceptual problems. Some of the key ingredients in this interplay are sheaves, cohomology, Lie groups, connections and differential operators. In Global Calculus, the appropriate formalism for these topics is laid out with numerous examples and applications by one of the experts in differential and algebraic geometry. Ramanan has chosen an uncommon but natural path through the subject. In this almost completely self-contained account, these topics are developed from scratch. The basics of Fourier transforms, Sobolev theory and interior regularity are proved at the same time as symbol calculus, culminating in beautiful results in global analysis, real and complex. Many new perspectives on traditional and modern questions of differential analysis and geometry are the hallmarks of the book. The book is suitable for a first year graduate course on Global Analysis.


Foundations of Differentiable Manifolds and Lie Groups

Foundations of Differentiable Manifolds and Lie Groups

Author: Frank W. Warner

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 283

ISBN-13: 1475717997

DOWNLOAD EBOOK

Foundations of Differentiable Manifolds and Lie Groups gives a clear, detailed, and careful development of the basic facts on manifold theory and Lie Groups. Coverage includes differentiable manifolds, tensors and differentiable forms, Lie groups and homogenous spaces, and integration on manifolds. The book also provides a proof of the de Rham theorem via sheaf cohomology theory and develops the local theory of elliptic operators culminating in a proof of the Hodge theorem.


Algebraic Geometry over the Complex Numbers

Algebraic Geometry over the Complex Numbers

Author: Donu Arapura

Publisher: Springer Science & Business Media

Published: 2012-02-15

Total Pages: 326

ISBN-13: 1461418097

DOWNLOAD EBOOK

This is a relatively fast paced graduate level introduction to complex algebraic geometry, from the basics to the frontier of the subject. It covers sheaf theory, cohomology, some Hodge theory, as well as some of the more algebraic aspects of algebraic geometry. The author frequently refers the reader if the treatment of a certain topic is readily available elsewhere but goes into considerable detail on topics for which his treatment puts a twist or a more transparent viewpoint. His cases of exploration and are chosen very carefully and deliberately. The textbook achieves its purpose of taking new students of complex algebraic geometry through this a deep yet broad introduction to a vast subject, eventually bringing them to the forefront of the topic via a non-intimidating style.


Cohomology of Sheaves

Cohomology of Sheaves

Author: Birger Iversen

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 476

ISBN-13: 3642827837

DOWNLOAD EBOOK

This text exposes the basic features of cohomology of sheaves and its applications. The general theory of sheaves is very limited and no essential result is obtainable without turn ing to particular classes of topological spaces. The most satis factory general class is that of locally compact spaces and it is the study of such spaces which occupies the central part of this text. The fundamental concepts in the study of locally compact spaces is cohomology with compact support and a particular class of sheaves,the so-called soft sheaves. This class plays a double role as the basic vehicle for the internal theory and is the key to applications in analysis. The basic example of a soft sheaf is the sheaf of smooth functions on ~n or more generally on any smooth manifold. A rather large effort has been made to demon strate the relevance of sheaf theory in even the most elementary analysis. This process has been reversed in order to base the fundamental calculations in sheaf theory on elementary analysis.


Quasi-projective Moduli for Polarized Manifolds

Quasi-projective Moduli for Polarized Manifolds

Author: Eckart Viehweg

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 329

ISBN-13: 3642797458

DOWNLOAD EBOOK

The concept of moduli goes back to B. Riemann, who shows in [68] that the isomorphism class of a Riemann surface of genus 9 ~ 2 depends on 3g - 3 parameters, which he proposes to name "moduli". A precise formulation of global moduli problems in algebraic geometry, the definition of moduli schemes or of algebraic moduli spaces for curves and for certain higher dimensional manifolds have only been given recently (A. Grothendieck, D. Mumford, see [59]), as well as solutions in some cases. It is the aim of this monograph to present methods which allow over a field of characteristic zero to construct certain moduli schemes together with an ample sheaf. Our main source of inspiration is D. Mumford's "Geometric In variant Theory". We will recall the necessary tools from his book [59] and prove the "Hilbert-Mumford Criterion" and some modified version for the stability of points under group actions. As in [78], a careful study of positivity proper ties of direct image sheaves allows to use this criterion to construct moduli as quasi-projective schemes for canonically polarized manifolds and for polarized manifolds with a semi-ample canonical sheaf.