Shape Optimization and Spectral Theory

Shape Optimization and Spectral Theory

Author: Antoine Henrot

Publisher: De Gruyter Open

Published: 2017-05-08

Total Pages: 474

ISBN-13: 9783110550856

DOWNLOAD EBOOK

"Shape optimization and spectral theory" is a survey book aiming to give an overview of recent results in spectral geometry and its links with shape optimization. It covers most of the issues which are important for people working in PDE and differential geometry interested in sharp inequalities and qualitative behaviour for eigenvalues of the Laplacian with different kind of boundary conditions (Dirichlet, Robin and Steklov). This includes: existence of optimal shapes, their regularity, the case of special domains like triangles, isospectrality, quantitative form of the isoperimetric inequalities, optimal partitions, universal inequalities and numerical results. Much progress has been made in these extremum problems during the last ten years and this edited volume presents a valuable update to a wide community interested in these topics. List of contributors Antunes Pedro R.S., Ashbaugh Mark, Bonnaillie-Noel Virginie, Brasco Lorenzo, Bucur Dorin, Buttazzo Giuseppe, De Philippis Guido, Freitas Pedro, Girouard Alexandre, Helffer Bernard, Kennedy James, Lamboley Jimmy, Laugesen Richard S., Oudet Edouard, Pierre Michel, Polterovich Iosif, Siudeja Bartlomiej A., Velichkov Bozhidar


Existence and Regularity Results for Some Shape Optimization Problems

Existence and Regularity Results for Some Shape Optimization Problems

Author: Bozhidar Velichkov

Publisher: Springer

Published: 2015-03-21

Total Pages: 362

ISBN-13: 8876425276

DOWNLOAD EBOOK

​We study the existence and regularity of optimal domains for functionals depending on the spectrum of the Dirichlet Laplacian or of more general Schrödinger operators. The domains are subject to perimeter and volume constraints; we also take into account the possible presence of geometric obstacles. We investigate the properties of the optimal sets and of the optimal state functions. In particular, we prove that the eigenfunctions are Lipschitz continuous up to the boundary and that the optimal sets subject to the perimeter constraint have regular free boundary. We also consider spectral optimization problems in non-Euclidean settings and optimization problems for potentials and measures, as well as multiphase and optimal partition problems.


Shape Optimization and Spectral Theory

Shape Optimization and Spectral Theory

Author: Antoine Henrot

Publisher: De Gruyter Open

Published: 2017

Total Pages: 0

ISBN-13: 9783110550887

DOWNLOAD EBOOK

"Shape optimization and spectral theory" is a survey book aiming to give an overview of recent results in spectral geometry and its links with shape optimization. It covers most of the issues which are important for people working in PDE and differential geometry interested in sharp inequalities and qualitative behaviour for eigenvalues of the Laplacian with different kind of boundary conditions (Dirichlet, Robin and Steklov). This includes: existence of optimal shapes, their regularity, the case of special domains like triangles, isospectrality, quantitative form of the isoperimetric inequalities, optimal partitions, universal inequalities and numerical results. Much progress has been made in these extremum problems during the last ten years and this edited volume presents a valuable update to a wide community interested in these topics. List of contributors Antunes Pedro R.S., Ashbaugh Mark, Bonnaillie-Noël Virginie, Brasco Lorenzo, Bucur Dorin, Buttazzo Giuseppe, De Philippis Guido, Freitas Pedro, Girouard Alexandre, Helffer Bernard, Kennedy James, Lamboley Jimmy, Laugesen Richard S., Oudet Edouard, Pierre Michel, Polterovich Iosif, Siudeja Bartlomiej A., Velichkov Bozhidar


Shape Optimization

Shape Optimization

Author: Catherine Bandle

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2023-06-19

Total Pages: 292

ISBN-13: 3111025438

DOWNLOAD EBOOK

This book investigates how domain dependent quantities from geometry and physics behave when the domain is perturbed. Of particular interest are volume- and perimeter-preserving perturbations. The first and second derivatives with respect to the perturbation are exploited for domain functionals like eigenvalues, energies and geometrical quantities. They provide necessary conditions for optimal domains and are useful when global approaches like symmetrizations fail. The book is exampledriven and illustrates the usefulness of domain variations in various applications.


Spectral Theory and Applications

Spectral Theory and Applications

Author: Alexandre Girouard

Publisher: American Mathematical Soc.

Published: 2018-11-21

Total Pages: 224

ISBN-13: 147043556X

DOWNLOAD EBOOK

This book is a collection of lecture notes and survey papers based on the minicourses given by leading experts at the 2016 CRM Summer School on Spectral Theory and Applications, held from July 4–14, 2016, at Université Laval, Québec City, Québec, Canada. The papers contained in the volume cover a broad variety of topics in spectral theory, starting from the fundamentals and highlighting its connections to PDEs, geometry, physics, and numerical analysis.


Geometric and Computational Spectral Theory

Geometric and Computational Spectral Theory

Author: Alexandre Girouard

Publisher: American Mathematical Soc.

Published: 2017-10-30

Total Pages: 298

ISBN-13: 147042665X

DOWNLOAD EBOOK

A co-publication of the AMS and Centre de Recherches Mathématiques The book is a collection of lecture notes and survey papers based on the mini-courses given by leading experts at the 2015 Séminaire de Mathématiques Supérieures on Geometric and Computational Spectral Theory, held from June 15–26, 2015, at the Centre de Recherches Mathématiques, Université de Montréal, Montréal, Quebec, Canada. The volume covers a broad variety of topics in spectral theory, highlighting its connections to differential geometry, mathematical physics and numerical analysis, bringing together the theoretical and computational approaches to spectral theory, and emphasizing the interplay between the two.


Shape Optimization And Optimal Design

Shape Optimization And Optimal Design

Author: John Cagnol

Publisher: CRC Press

Published: 2017-08-02

Total Pages: 458

ISBN-13: 9780203904169

DOWNLOAD EBOOK

This volume presents developments and advances in modelling passive and active control systems governed by partial differential equations. It emphasizes shape analysis, optimal shape design, controllability, nonlinear boundary control, and stabilization. The authors include essential data on exact boundary controllability of thermoelastic plates with variable transmission coefficients.


Processing, Analyzing and Learning of Images, Shapes, and Forms: Part 2

Processing, Analyzing and Learning of Images, Shapes, and Forms: Part 2

Author:

Publisher: North Holland

Published: 2019-10-15

Total Pages: 704

ISBN-13: 0444641408

DOWNLOAD EBOOK

Processing, Analyzing and Learning of Images, Shapes, and Forms: Part 2, Volume 20, surveys the contemporary developments relating to the analysis and learning of images, shapes and forms, covering mathematical models and quick computational techniques. Chapter cover Alternating Diffusion: A Geometric Approach for Sensor Fusion, Generating Structured TV-based Priors and Associated Primal-dual Methods, Graph-based Optimization Approaches for Machine Learning, Uncertainty Quantification and Networks, Extrinsic Shape Analysis from Boundary Representations, Efficient Numerical Methods for Gradient Flows and Phase-field Models, Recent Advances in Denoising of Manifold-Valued Images, Optimal Registration of Images, Surfaces and Shapes, and much more.


Topics in Spectral Geometry

Topics in Spectral Geometry

Author: Michael Levitin

Publisher: American Mathematical Society

Published: 2023-11-30

Total Pages: 346

ISBN-13: 1470475251

DOWNLOAD EBOOK

It is remarkable that various distinct physical phenomena, such as wave propagation, heat diffusion, electron movement in quantum mechanics, oscillations of fluid in a container, can be described using the same differential operator, the Laplacian. Spectral data (i.e., eigenvalues and eigenfunctions) of the Laplacian depend in a subtle way on the geometry of the underlying object, e.g., a Euclidean domain or a Riemannian manifold, on which the operator is defined. This dependence, or, rather, the interplay between the geometry and the spectrum, is the main subject of spectral geometry. Its roots can be traced to Ernst Chladni's experiments with vibrating plates, Lord Rayleigh's theory of sound, and Mark Kac's celebrated question “Can one hear the shape of a drum?” In the second half of the twentieth century spectral geometry emerged as a separate branch of geometric analysis. Nowadays it is a rapidly developing area of mathematics, with close connections to other fields, such as differential geometry, mathematical physics, partial differential equations, number theory, dynamical systems, and numerical analysis. This book can be used for a graduate or an advanced undergraduate course on spectral geometry, starting from the basics but at the same time covering some of the exciting recent developments which can be explained without too many prerequisites.


Shape Optimization by the Homogenization Method

Shape Optimization by the Homogenization Method

Author: Gregoire Allaire

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 470

ISBN-13: 1468492861

DOWNLOAD EBOOK

This book provides an introduction to the theory and numerical developments of the homogenization method. It's main features are: a comprehensive presentation of homogenization theory; an introduction to the theory of two-phase composite materials; a detailed treatment of structural optimization by using homogenization; a complete discussion of the resulting numerical algorithms with many documented test problems. It will be of interest to researchers, engineers, and advanced graduate students in applied mathematics, mechanical engineering, and structural optimization.