Severe Convective Storms

Severe Convective Storms

Author: Charles Doswell

Publisher: Springer

Published: 2015-03-30

Total Pages: 567

ISBN-13: 1935704060

DOWNLOAD EBOOK

This highly illustrated book is a collection of 13 review papers focusing on convective storms and the weather they produce. It discusses severe convective storms, mesoscale processes, tornadoes and tornadic storms, severe local storms, flash flood forecast and the electrification of severe storms.


Severe Convective Storms and Tornadoes

Severe Convective Storms and Tornadoes

Author: Howard B. Bluestein

Publisher: Springer Science & Business Media

Published: 2013-06-03

Total Pages: 482

ISBN-13: 3642053815

DOWNLOAD EBOOK

This book is a focused, comprehensive reference on recent research on severe convective storms and tornadoes. It will contain many illustrations of severe storm phenomena from mobile Doppler radars, operational Doppler radars, photographs and numerical simulations.


Mesoscale Meteorology and Forecasting

Mesoscale Meteorology and Forecasting

Author: Peter Ray

Publisher: Springer

Published: 2015-03-30

Total Pages: 803

ISBN-13: 1935704206

DOWNLOAD EBOOK

This book is a collection of selected lectures presented at the ‘Intensive Course on Mesoscale Meteorology and Forecasting’ in Boulder, USA, in 1984. It includes mesoscale classifications, observing techniques and systems, internally generated circulations, mesoscale convective systems, externally forced circulations, modeling and short-range forecasting techniques. This is a highly illustrated book and comprehensive work, including extensive bibliographic references. It is aimed at graduates in meteorology and for professionals working in the field.


Attribution of Extreme Weather Events in the Context of Climate Change

Attribution of Extreme Weather Events in the Context of Climate Change

Author: National Academies of Sciences, Engineering, and Medicine

Publisher: National Academies Press

Published: 2016-07-28

Total Pages: 187

ISBN-13: 0309380979

DOWNLOAD EBOOK

As climate has warmed over recent years, a new pattern of more frequent and more intense weather events has unfolded across the globe. Climate models simulate such changes in extreme events, and some of the reasons for the changes are well understood. Warming increases the likelihood of extremely hot days and nights, favors increased atmospheric moisture that may result in more frequent heavy rainfall and snowfall, and leads to evaporation that can exacerbate droughts. Even with evidence of these broad trends, scientists cautioned in the past that individual weather events couldn't be attributed to climate change. Now, with advances in understanding the climate science behind extreme events and the science of extreme event attribution, such blanket statements may not be accurate. The relatively young science of extreme event attribution seeks to tease out the influence of human-cause climate change from other factors, such as natural sources of variability like El Niño, as contributors to individual extreme events. Event attribution can answer questions about how much climate change influenced the probability or intensity of a specific type of weather event. As event attribution capabilities improve, they could help inform choices about assessing and managing risk, and in guiding climate adaptation strategies. This report examines the current state of science of extreme weather attribution, and identifies ways to move the science forward to improve attribution capabilities.


Climate Change and Extreme Events

Climate Change and Extreme Events

Author: Ali Fares

Publisher: Elsevier

Published: 2021-03-02

Total Pages: 256

ISBN-13: 0128232889

DOWNLOAD EBOOK

Climate Change and Extreme Events uses a multidisciplinary approach to discuss the relationship between climate change-related weather extremes and their impact on human lives. Topics discussed are grouped into four major sections: weather parameters, hydrological responses, mitigation and adaptation, and governance and policies, with each addressed with regard to past, present and future perspectives. Sections give an overview of weather parameters and hydrological responses, presenting current knowledge and a future outlook on air and stream temperatures, precipitation, storms and hurricanes, flooding, and ecosystem responses to these extremes. Other sections cover extreme weather events and discuss the role of the state in policymaking. This book provides a valuable interdisciplinary resource to climate scientists and meteorologists, environmental researchers, and social scientists interested in extreme weather. - Provides an integrated interdisciplinary approach to how climate change impacts the hydrological system - Addresses significant knowledge gaps in our understanding of climate change and extreme events - Discusses the societal impacts of climate change-related weather extremes, including multilevel governance and adaptation policy


Intraseasonal Variability in the Atmosphere-Ocean Climate System

Intraseasonal Variability in the Atmosphere-Ocean Climate System

Author: William K.-M. Lau

Publisher: Springer Science & Business Media

Published: 2011-10-25

Total Pages: 642

ISBN-13: 3642139140

DOWNLOAD EBOOK

Improving the reliability of long-range forecasts of natural disasters, such as severe weather, droughts and floods, in North America, South America, Africa and the Asian/Australasian monsoon regions is of vital importance to the livelihood of millions of people who are affected by these events. In recent years the significance of major short-term climatic variability, and events such as the El Nino/Southern Oscillation in the Pacific, with its worldwide effect on rainfall patterns, has been all to clearly demonstrated. Understanding and predicting the intra-seasonal variability (ISV) of the ocean and atmosphere is crucial to improving long range environmental forecasts and the reliability of climate change projects through climate models. In the second edition of this classic book on the subject, the authors have updated the original chapters, where appropriate, and added a new chapter that includes short subjects representing substantial new development in ISV research since the publication of the first edition.


Mesoscale-Convective Processes in the Atmosphere

Mesoscale-Convective Processes in the Atmosphere

Author: Robert J. Trapp

Publisher: Cambridge University Press

Published: 2013-03-25

Total Pages: 359

ISBN-13: 1107328217

DOWNLOAD EBOOK

This new textbook seeks to promote a deep yet accessible understanding of mesoscale-convective processes in the atmosphere. Mesoscale-convective processes are commonly manifested in the form of thunderstorms, which are fast evolving, inherently hazardous, and can assume a broad range of sizes and severity. Modern explanations of the convective-storm dynamics, and of the related development of tornadoes, damaging 'straight-line' winds and heavy rainfall, are provided. Students and weather professionals will benefit especially from unique chapters devoted to observations and measurements of mesoscale phenomena, mesoscale prediction and predictability, and dynamical feedbacks between mesoscale-convective processes and larger-scale motions.


Lightning: Principles, Instruments and Applications

Lightning: Principles, Instruments and Applications

Author: Hans Dieter Betz

Publisher: Springer Science & Business Media

Published: 2008-12-04

Total Pages: 641

ISBN-13: 140209079X

DOWNLOAD EBOOK

Lightning represents a natural phenomenon of substantial interest. Due to its complex nature, research continues in many countries and reveals amazing results. Lightning is actively observed because of its relevance to Earth climate and air composition in addition to the classical aspects of related human fatalities and damage to forests, buildings, power lines, aircraft, structures and electronic devices. In this volume, the most important contemporary questions on lightning are addressed and analyzed under many experimental and theoretical aspects. Lightning detection techniques using ground-based and space-borne methods are described, along with network engineering and statistical analysis. Contributions detail research on atmospheric electricity, cloud physics, lightning physics, modeling of electrical storms and middle atmospheric events. Special phenomena such as triggered lightning and sprite observations are examined. Lightning-induced nitrogen oxides and their effects on atmospheric chemistry and climate are discussed. Each topic is presented by international experts in the field. Topics include: * air chemistry * convective storms * infrasound from lightning * lightning and climate change * lightning and precipitation * lightning and radiation * lightning and supercells * lightning and thunderstorms * lightning detection * lightning from space * lighting protection * lightning return strokes * observations and interpretations * spatial distribution and frequency * triggered lightning * weather extremes


Mesoscale Meteorology in Midlatitudes

Mesoscale Meteorology in Midlatitudes

Author: Paul Markowski

Publisher: John Wiley & Sons

Published: 2011-09-20

Total Pages: 435

ISBN-13: 1119966671

DOWNLOAD EBOOK

Mesoscale Meteorology in Mid-Latitudes presents the dynamics of mesoscale meteorological phenomena in a highly accessible, student-friendly manner. The book's clear mathematical treatments are complemented by high-quality photographs and illustrations. Comprehensive coverage of subjects including boundary layer mesoscale phenomena, orographic phenomena and deep convection is brought together with the latest developments in the field to provide an invaluable resource for mesoscale meteorology students. Mesoscale Meteorology in Mid-Latitudes functions as a comprehensive, easy-to-use undergraduate textbook while also providing a useful reference for graduate students, research scientists and weather industry professionals. Illustrated in full colour throughout Covers the latest developments and research in the field Comprehensive coverage of deep convection and its initiation Uses real life examples of phenomena taken from broad geographical areas to demonstrate the practical aspects of the science


The Electrical Nature of Storms

The Electrical Nature of Storms

Author: D. R. MacGorman

Publisher: Oxford University Press, USA

Published: 1998

Total Pages: 436

ISBN-13: 9780195073379

DOWNLOAD EBOOK

Rapid progress during the last twenty years has created a host of new technologies for studying electrical storms, including lightning mapping systems, new radars, satellite sensors, and new ways of measuring electric field and particle charge. This book explains how these advances have revolutionized our understanding. The books provides substantial background material, making it accessible to a broad scientific audience.