7th International Conference on Practical Applications of Agents and Multi-Agent Systems (PAAMS'09)

7th International Conference on Practical Applications of Agents and Multi-Agent Systems (PAAMS'09)

Author: Yves Demazeau

Publisher: Springer Science & Business Media

Published: 2009-03-08

Total Pages: 603

ISBN-13: 3642004873

DOWNLOAD EBOOK

PAAMS, the International Conference on Practical Applications of Agents and Multi-Agent Systems is an evolution of the International Workshop on Practical Applications of Agents and Multi-Agent Systems. PAAMS is an international yearly tribune to present, to discuss, and to disseminate the latest developments and the most important outcomes related to real-world applications. It provides a unique opportunity to bring multi-disciplinary experts, academics and practitioners together to exchange their experience in the development of Agents and Multi-Agent Systems. This volume presents the papers that have been accepted for the 2009 edition. These articles capture the most innovative results and this year’s trends: Assisted Cognition, E-Commerce, Grid Computing, Human Modelling, Information Systems, Knowledge Management, Agent-Based Simulation, Software Development, Transports, Trust and Security. Each paper has been reviewed by three different reviewers, from an international committee composed of 64 members from 20 different countries. From the 92 submissions received, 35 were selected for full presentation at the conference, and 26 were accepted as posters.


Applied Natural Language Processing in the Enterprise

Applied Natural Language Processing in the Enterprise

Author: Ankur A. Patel

Publisher: "O'Reilly Media, Inc."

Published: 2021-05-12

Total Pages: 336

ISBN-13: 1492062545

DOWNLOAD EBOOK

NLP has exploded in popularity over the last few years. But while Google, Facebook, OpenAI, and others continue to release larger language models, many teams still struggle with building NLP applications that live up to the hype. This hands-on guide helps you get up to speed on the latest and most promising trends in NLP. With a basic understanding of machine learning and some Python experience, you'll learn how to build, train, and deploy models for real-world applications in your organization. Authors Ankur Patel and Ajay Uppili Arasanipalai guide you through the process using code and examples that highlight the best practices in modern NLP. Use state-of-the-art NLP models such as BERT and GPT-3 to solve NLP tasks such as named entity recognition, text classification, semantic search, and reading comprehension Train NLP models with performance comparable or superior to that of out-of-the-box systems Learn about Transformer architecture and modern tricks like transfer learning that have taken the NLP world by storm Become familiar with the tools of the trade, including spaCy, Hugging Face, and fast.ai Build core parts of the NLP pipeline--including tokenizers, embeddings, and language models--from scratch using Python and PyTorch Take your models out of Jupyter notebooks and learn how to deploy, monitor, and maintain them in production


Deep Learning for Coders with fastai and PyTorch

Deep Learning for Coders with fastai and PyTorch

Author: Jeremy Howard

Publisher: O'Reilly Media

Published: 2020-06-29

Total Pages: 624

ISBN-13: 1492045497

DOWNLOAD EBOOK

Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala


Natural Language Processing with Python

Natural Language Processing with Python

Author: Steven Bird

Publisher: "O'Reilly Media, Inc."

Published: 2009-06-12

Total Pages: 506

ISBN-13: 0596555717

DOWNLOAD EBOOK

This book offers a highly accessible introduction to natural language processing, the field that supports a variety of language technologies, from predictive text and email filtering to automatic summarization and translation. With it, you'll learn how to write Python programs that work with large collections of unstructured text. You'll access richly annotated datasets using a comprehensive range of linguistic data structures, and you'll understand the main algorithms for analyzing the content and structure of written communication. Packed with examples and exercises, Natural Language Processing with Python will help you: Extract information from unstructured text, either to guess the topic or identify "named entities" Analyze linguistic structure in text, including parsing and semantic analysis Access popular linguistic databases, including WordNet and treebanks Integrate techniques drawn from fields as diverse as linguistics and artificial intelligence This book will help you gain practical skills in natural language processing using the Python programming language and the Natural Language Toolkit (NLTK) open source library. If you're interested in developing web applications, analyzing multilingual news sources, or documenting endangered languages -- or if you're simply curious to have a programmer's perspective on how human language works -- you'll find Natural Language Processing with Python both fascinating and immensely useful.


Complex Networks and Their Applications VII

Complex Networks and Their Applications VII

Author: Luca Maria Aiello

Publisher: Springer

Published: 2018-12-05

Total Pages: 689

ISBN-13: 3030054144

DOWNLOAD EBOOK

This book highlights cutting-edge research in the field of network science, offering scientists, researchers, students and practitioners a unique update on the latest advances in theory, together with a wealth of applications. It presents the peer-reviewed proceedings of the VII International Conference on Complex Networks and their Applications (COMPLEX NETWORKS 2018), which was held in Cambridge on December 11–13, 2018. The carefully selected papers cover a wide range of theoretical topics such as network models and measures; community structure and network dynamics; diffusion, epidemics and spreading processes; and resilience and control; as well as all the main network applications, including social and political networks; networks in finance and economics; biological and neuroscience networks; and technological networks.


NLP

NLP

Author: Tom Hoobyar

Publisher: Harper Collins

Published: 2013-02-12

Total Pages: 488

ISBN-13: 0062083627

DOWNLOAD EBOOK

By the team behind the bestselling NLP: The New Technology of Achievement comes an essential new guide to NLP techniques—for self-development and influencing others—in a focused, step-by-step handbook. NLP (Neuro-Linguistic Programming) has already helped millions of people overcome fears, increase confidence, enrich relationships, and achieve greater success. Now, from the company and training team behind NLP: The New Technology of Achievement, one of the bestselling NLP books of all time, comes NLP: The Essential Guide to Neuro-Linguistic Programming \. Written by three NLP Master Practitioners and training coaches, including the president of NLP Comprehensive, with an introduction from the President of NLP Comprehensive, NLP: The Essential Guide to Neuro-Linguistic Programming guides users to peak performance in business and life, and gets specific results. In twelve illuminating sections, NLP: The Essential Guide to Neuro-Linguistic Programming leads you through dozens of “discoveries”—revelations of NLP practice that enable you to explore your own personal thinking patterns, to manage them—and to transform them. Divided into two categories, “All About You” and “All About the Other Guy,” these strategies offer a personal and interpersonal program that frees you to become better at managing your feelings instead of being dominated by them, managing your motivations, being less judgmental, more productive, more confident, more flexible, more persuasive, liked, and respected. Chapters on “Personal Remodeling” (Discovery 9: No inner enemy) and “Secrets of Making Your Point” (Discovery 31: Convey understanding and safety without talking), enhance creativity, collaboration, cooperation, and communication. Through “mind reading” techniques—non-verbal communication, and “hearing what’s missing”—learn the secrets of relating with others, understanding how they are thinking—and influencing them. A streamlined all-purpose guide for both newcomers and NLP veterans, NLP: The Essential Guide to Neuro-Linguistic Programming is the new all-in-one, eye-opening blueprint for your own ultimate success.


Natural Language Processing with Transformers, Revised Edition

Natural Language Processing with Transformers, Revised Edition

Author: Lewis Tunstall

Publisher: "O'Reilly Media, Inc."

Published: 2022-05-26

Total Pages: 409

ISBN-13: 1098136764

DOWNLOAD EBOOK

Since their introduction in 2017, transformers have quickly become the dominant architecture for achieving state-of-the-art results on a variety of natural language processing tasks. If you're a data scientist or coder, this practical book -now revised in full color- shows you how to train and scale these large models using Hugging Face Transformers, a Python-based deep learning library. Transformers have been used to write realistic news stories, improve Google Search queries, and even create chatbots that tell corny jokes. In this guide, authors Lewis Tunstall, Leandro von Werra, and Thomas Wolf, among the creators of Hugging Face Transformers, use a hands-on approach to teach you how transformers work and how to integrate them in your applications. You'll quickly learn a variety of tasks they can help you solve. Build, debug, and optimize transformer models for core NLP tasks, such as text classification, named entity recognition, and question answering Learn how transformers can be used for cross-lingual transfer learning Apply transformers in real-world scenarios where labeled data is scarce Make transformer models efficient for deployment using techniques such as distillation, pruning, and quantization Train transformers from scratch and learn how to scale to multiple GPUs and distributed environments


Natural Language Processing in Artificial Intelligence

Natural Language Processing in Artificial Intelligence

Author: Brojo Kishore Mishra

Publisher: CRC Press

Published: 2020-11-01

Total Pages: 297

ISBN-13: 1000711315

DOWNLOAD EBOOK

This volume focuses on natural language processing, artificial intelligence, and allied areas. Natural language processing enables communication between people and computers and automatic translation to facilitate easy interaction with others around the world. This book discusses theoretical work and advanced applications, approaches, and techniques for computational models of information and how it is presented by language (artificial, human, or natural) in other ways. It looks at intelligent natural language processing and related models of thought, mental states, reasoning, and other cognitive processes. It explores the difficult problems and challenges related to partiality, underspecification, and context-dependency, which are signature features of information in nature and natural languages. Key features: Addresses the functional frameworks and workflow that are trending in NLP and AI Looks at the latest technologies and the major challenges, issues, and advances in NLP and AI Explores an intelligent field monitoring and automated system through AI with NLP and its implications for the real world Discusses data acquisition and presents a real-time case study with illustrations related to data-intensive technologies in AI and NLP.


Practical Text Mining and Statistical Analysis for Non-structured Text Data Applications

Practical Text Mining and Statistical Analysis for Non-structured Text Data Applications

Author: Gary Miner

Publisher: Academic Press

Published: 2012-01-11

Total Pages: 1096

ISBN-13: 012386979X

DOWNLOAD EBOOK

"The world contains an unimaginably vast amount of digital information which is getting ever vaster ever more rapidly. This makes it possible to do many things that previously could not be done: spot business trends, prevent diseases, combat crime and so on. Managed well, the textual data can be used to unlock new sources of economic value, provide fresh insights into science and hold governments to account. As the Internet expands and our natural capacity to process the unstructured text that it contains diminishes, the value of text mining for information retrieval and search will increase dramatically. This comprehensive professional reference brings together all the information, tools and methods a professional will need to efficiently use text mining applications and statistical analysis. The Handbook of Practical Text Mining and Statistical Analysis for Non-structured Text Data Applications presents a comprehensive how- to reference that shows the user how to conduct text mining and statistically analyze results. In addition to providing an in-depth examination of core text mining and link detection tools, methods and operations, the book examines advanced preprocessing techniques, knowledge representation considerations, and visualization approaches. Finally, the book explores current real-world, mission-critical applications of text mining and link detection using real world example tutorials in such varied fields as corporate, finance, business intelligence, genomics research, and counterterrorism activities"--


Real-World Natural Language Processing

Real-World Natural Language Processing

Author: Masato Hagiwara

Publisher: Simon and Schuster

Published: 2021-12-14

Total Pages: 334

ISBN-13: 1617296422

DOWNLOAD EBOOK

Voice assistants, automated customer service agents, and other cutting-edge human-to-computer interactions rely on accurately interpreting language as it is written and spoken. Real-world Natural Language Processing teaches you how to create practical NLP applications without getting bogged down in complex language theory and the mathematics of deep learning. In this engaging book, you''ll explore the core tools and techniques required to build a huge range of powerful NLP apps. about the technology Natural language processing is the part of AI dedicated to understanding and generating human text and speech. NLP covers a wide range of algorithms and tasks, from classic functions such as spell checkers, machine translation, and search engines to emerging innovations like chatbots, voice assistants, and automatic text summarization. Wherever there is text, NLP can be useful for extracting meaning and bridging the gap between humans and machines. about the book Real-world Natural Language Processing teaches you how to create practical NLP applications using Python and open source NLP libraries such as AllenNLP and Fairseq. In this practical guide, you''ll begin by creating a complete sentiment analyzer, then dive deep into each component to unlock the building blocks you''ll use in all different kinds of NLP programs. By the time you''re done, you''ll have the skills to create named entity taggers, machine translation systems, spelling correctors, and language generation systems. what''s inside Design, develop, and deploy basic NLP applications NLP libraries such as AllenNLP and Fairseq Advanced NLP concepts such as attention and transfer learning about the reader Aimed at intermediate Python programmers. No mathematical or machine learning knowledge required. about the author Masato Hagiwara received his computer science PhD from Nagoya University in 2009, focusing on Natural Language Processing and machine learning. He has interned at Google and Microsoft Research, and worked at Baidu Japan, Duolingo, and Rakuten Institute of Technology. He now runs his own consultancy business advising clients, including startups and research institutions.