Topological Fixed Point Theory of Multivalued Mappings

Topological Fixed Point Theory of Multivalued Mappings

Author: Lech Górniewicz

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 409

ISBN-13: 9401591954

DOWNLOAD EBOOK

This book is an attempt to give a systematic presentation of results and meth ods which concern the fixed point theory of multivalued mappings and some of its applications. In selecting the material we have restricted ourselves to study ing topological methods in the fixed point theory of multivalued mappings and applications, mainly to differential inclusions. Thus in Chapter III the approximation (on the graph) method in fixed point theory of multi valued mappings is presented. Chapter IV is devoted to the homo logical methods and contains more general results, e. g. , the Lefschetz Fixed Point Theorem, the fixed point index and the topological degree theory. In Chapter V applications to some special problems in fixed point theory are formulated. Then in the last chapter a direct application's to differential inclusions are presented. Note that Chapter I and Chapter II have an auxiliary character, and only results con nected with the Banach Contraction Principle (see Chapter II) are strictly related to topological methods in the fixed point theory. In the last section of our book (see Section 75) we give a bibliographical guide and also signal some further results which are not contained in our monograph. The author thanks several colleagues and my wife Maria who read and com mented on the manuscript. These include J. Andres, A. Buraczewski, G. Gabor, A. Gorka, M. Gorniewicz, S. Park and A. Wieczorek. The author wish to express his gratitude to P. Konstanty for preparing the electronic version of this monograph.


Topological Fixed Point Principles for Boundary Value Problems

Topological Fixed Point Principles for Boundary Value Problems

Author: J. Andres

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 771

ISBN-13: 9401704074

DOWNLOAD EBOOK

The book is devoted to the topological fixed point theory both for single-valued and multivalued mappings in locally convex spaces, including its application to boundary value problems for ordinary differential equations (inclusions) and to (multivalued) dynamical systems. It is the first monograph dealing with the topological fixed point theory in non-metric spaces. Although the theoretical material was tendentiously selected with respect to applications, the text is self-contained. Therefore, three appendices concerning almost-periodic and derivo-periodic single-valued (multivalued) functions and (multivalued) fractals are supplied to the main three chapters.


An Introduction to Optimal Control Theory

An Introduction to Optimal Control Theory

Author: Onésimo Hernández-Lerma

Publisher: Springer Nature

Published: 2023-02-21

Total Pages: 279

ISBN-13: 3031211391

DOWNLOAD EBOOK

This book introduces optimal control problems for large families of deterministic and stochastic systems with discrete or continuous time parameter. These families include most of the systems studied in many disciplines, including Economics, Engineering, Operations Research, and Management Science, among many others. The main objective is to give a concise, systematic, and reasonably self contained presentation of some key topics in optimal control theory. To this end, most of the analyses are based on the dynamic programming (DP) technique. This technique is applicable to almost all control problems that appear in theory and applications. They include, for instance, finite and infinite horizon control problems in which the underlying dynamic system follows either a deterministic or stochastic difference or differential equation. In the infinite horizon case, it also uses DP to study undiscounted problems, such as the ergodic or long-run average cost. After a general introduction to control problems, the book covers the topic dividing into four parts with different dynamical systems: control of discrete-time deterministic systems, discrete-time stochastic systems, ordinary differential equations, and finally a general continuous-time MCP with applications for stochastic differential equations. The first and second part should be accessible to undergraduate students with some knowledge of elementary calculus, linear algebra, and some concepts from probability theory (random variables, expectations, and so forth). Whereas the third and fourth part would be appropriate for advanced undergraduates or graduate students who have a working knowledge of mathematical analysis (derivatives, integrals, ...) and stochastic processes.


Topological Degree Approach to Bifurcation Problems

Topological Degree Approach to Bifurcation Problems

Author: Michal Fečkan

Publisher: Springer Science & Business Media

Published: 2008-06-29

Total Pages: 266

ISBN-13: 1402087241

DOWNLOAD EBOOK

1. 1 Preface Many phenomena from physics, biology, chemistry and economics are modeled by di?erential equations with parameters. When a nonlinear equation is est- lished, its behavior/dynamics should be understood. In general, it is impossible to ?nd a complete dynamics of a nonlinear di?erential equation. Hence at least, either periodic or irregular/chaotic solutions are tried to be shown. So a pr- erty of a desired solution of a nonlinear equation is given as a parameterized boundary value problem. Consequently, the task is transformed to a solvability of an abstract nonlinear equation with parameters on a certain functional space. When a family of solutions of the abstract equation is known for some para- ters, the persistence or bifurcations of solutions from that family is studied as parameters are changing. There are several approaches to handle such nonl- ear bifurcation problems. One of them is a topological degree method, which is rather powerful in cases when nonlinearities are not enough smooth. The aim of this book is to present several original bifurcation results achieved by the author using the topological degree theory. The scope of the results is rather broad from showing periodic and chaotic behavior of non-smooth mechanical systems through the existence of traveling waves for ordinary di?erential eq- tions on in?nite lattices up to study periodic oscillations of undamped abstract waveequationsonHilbertspaceswithapplicationstononlinearbeamandstring partial di?erential equations. 1.


Continuous Selections of Multivalued Mappings

Continuous Selections of Multivalued Mappings

Author: Dusan Repovs

Publisher: Springer Science & Business Media

Published: 1998-09-30

Total Pages: 372

ISBN-13: 0792352777

DOWNLOAD EBOOK

Consists of three relatively independent parts--theory, results, and applications. The first part is directed toward advanced math students who wish to get familiar with the foundations of the theory. The second part surveys the existing results on continuous selections of multivalued mappings. It is intended for specialists in the area and for those who have mastered the first part. The third part collects examples of applications of continuous selections that have played a key role in the corresponding areas of mathematics. It is written for researchers in general and geometric topology, functional and convex analysis, approximation theory and fixed-point theory, differential inclusions, and mathematical economics. Annotation copyrighted by Book News, Inc., Portland, OR