Sequences, Groups, and Number Theory

Sequences, Groups, and Number Theory

Author: Valérie Berthé

Publisher: Birkhäuser

Published: 2018-04-09

Total Pages: 591

ISBN-13: 331969152X

DOWNLOAD EBOOK

This collaborative book presents recent trends on the study of sequences, including combinatorics on words and symbolic dynamics, and new interdisciplinary links to group theory and number theory. Other chapters branch out from those areas into subfields of theoretical computer science, such as complexity theory and theory of automata. The book is built around four general themes: number theory and sequences, word combinatorics, normal numbers, and group theory. Those topics are rounded out by investigations into automatic and regular sequences, tilings and theory of computation, discrete dynamical systems, ergodic theory, numeration systems, automaton semigroups, and amenable groups. This volume is intended for use by graduate students or research mathematicians, as well as computer scientists who are working in automata theory and formal language theory. With its organization around unified themes, it would also be appropriate as a supplemental text for graduate level courses.


Combinatorics and Number Theory of Counting Sequences

Combinatorics and Number Theory of Counting Sequences

Author: Istvan Mezo

Publisher: CRC Press

Published: 2019-08-19

Total Pages: 480

ISBN-13: 1351346385

DOWNLOAD EBOOK

Combinatorics and Number Theory of Counting Sequences is an introduction to the theory of finite set partitions and to the enumeration of cycle decompositions of permutations. The presentation prioritizes elementary enumerative proofs. Therefore, parts of the book are designed so that even those high school students and teachers who are interested in combinatorics can have the benefit of them. Still, the book collects vast, up-to-date information for many counting sequences (especially, related to set partitions and permutations), so it is a must-have piece for those mathematicians who do research on enumerative combinatorics. In addition, the book contains number theoretical results on counting sequences of set partitions and permutations, so number theorists who would like to see nice applications of their area of interest in combinatorics will enjoy the book, too. Features The Outlook sections at the end of each chapter guide the reader towards topics not covered in the book, and many of the Outlook items point towards new research problems. An extensive bibliography and tables at the end make the book usable as a standard reference. Citations to results which were scattered in the literature now become easy, because huge parts of the book (especially in parts II and III) appear in book form for the first time.


Uniform Distribution of Sequences

Uniform Distribution of Sequences

Author: L. Kuipers

Publisher: Courier Corporation

Published: 2012-05-24

Total Pages: 416

ISBN-13: 0486149994

DOWNLOAD EBOOK

The theory of uniform distribution began with Hermann Weyl's celebrated paper of 1916. In later decades, the theory moved beyond its roots in diophantine approximations to provide common ground for topics as diverse as number theory, probability theory, functional analysis, and topological algebra. This book summarizes the theory's development from its beginnings to the mid-1970s, with comprehensive coverage of both methods and their underlying principles. A practical introduction for students of number theory and analysis as well as a reference for researchers in the field, this book covers uniform distribution in compact spaces and in topological groups, in addition to examinations of sequences of integers and polynomials. Notes at the end of each section contain pertinent bibliographical references and a brief survey of additional results. Exercises range from simple applications of theorems to proofs of propositions that expand upon results stated in the text.


Algebraic Groups and Number Theory

Algebraic Groups and Number Theory

Author: Vladimir Platonov

Publisher: Academic Press

Published: 1993-12-07

Total Pages: 629

ISBN-13: 0080874592

DOWNLOAD EBOOK

This milestone work on the arithmetic theory of linear algebraic groups is now available in English for the first time. Algebraic Groups and Number Theory provides the first systematic exposition in mathematical literature of the junction of group theory, algebraic geometry, and number theory. The exposition of the topic is built on a synthesis of methods from algebraic geometry, number theory, analysis, and topology, and the result is a systematic overview ofalmost all of the major results of the arithmetic theory of algebraic groups obtained to date.


Group Theory

Group Theory

Author: Kai N. Cheng

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2016-11-21

Total Pages: 608

ISBN-13: 3110848392

DOWNLOAD EBOOK

The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.


Combinatorial Number Theory and Additive Group Theory

Combinatorial Number Theory and Additive Group Theory

Author: Alfred Geroldinger

Publisher: Springer Science & Business Media

Published: 2009-06-04

Total Pages: 324

ISBN-13: 3764389621

DOWNLOAD EBOOK

Additive combinatorics is a relatively recent term coined to comprehend the developments of the more classical additive number theory, mainly focussed on problems related to the addition of integers. Some classical problems like the Waring problem on the sum of k-th powers or the Goldbach conjecture are genuine examples of the original questions addressed in the area. One of the features of contemporary additive combinatorics is the interplay of a great variety of mathematical techniques, including combinatorics, harmonic analysis, convex geometry, graph theory, probability theory, algebraic geometry or ergodic theory. This book gathers the contributions of many of the leading researchers in the area and is divided into three parts. The two first parts correspond to the material of the main courses delivered, Additive combinatorics and non-unique factorizations, by Alfred Geroldinger, and Sumsets and structure, by Imre Z. Ruzsa. The third part collects the notes of most of the seminars which accompanied the main courses, and which cover a reasonably large part of the methods, techniques and problems of contemporary additive combinatorics.


Recurrence Sequences

Recurrence Sequences

Author: Graham Everest

Publisher: American Mathematical Soc.

Published: 2015-09-03

Total Pages: 338

ISBN-13: 1470423154

DOWNLOAD EBOOK

Recurrence sequences are of great intrinsic interest and have been a central part of number theory for many years. Moreover, these sequences appear almost everywhere in mathematics and computer science. This book surveys the modern theory of linear recurrence sequences and their generalizations. Particular emphasis is placed on the dramatic impact that sophisticated methods from Diophantine analysis and transcendence theory have had on the subject. Related work on bilinear recurrences and an emerging connection between recurrences and graph theory are covered. Applications and links to other areas of mathematics are described, including combinatorics, dynamical systems and cryptography, and computer science. The book is suitable for researchers interested in number theory, combinatorics, and graph theory.


Numbers, Sequences and Series

Numbers, Sequences and Series

Author: Keith Hirst

Publisher: Butterworth-Heinemann

Published: 1994-12-08

Total Pages: 213

ISBN-13: 0340610433

DOWNLOAD EBOOK

Concerned with the logical foundations of number systems from integers to complex numbers.


Interactions between Group Theory, Symmetry and Cryptology

Interactions between Group Theory, Symmetry and Cryptology

Author: María Isabel González Vasco

Publisher: MDPI

Published: 2020-04-22

Total Pages: 164

ISBN-13: 3039288024

DOWNLOAD EBOOK

Cryptography lies at the heart of most technologies deployed today for secure communications. At the same time, mathematics lies at the heart of cryptography, as cryptographic constructions are based on algebraic scenarios ruled by group or number theoretical laws. Understanding the involved algebraic structures is, thus, essential to design robust cryptographic schemes. This Special Issue is concerned with the interplay between group theory, symmetry and cryptography. The book highlights four exciting areas of research in which these fields intertwine: post-quantum cryptography, coding theory, computational group theory and symmetric cryptography. The articles presented demonstrate the relevance of rigorously analyzing the computational hardness of the mathematical problems used as a base for cryptographic constructions. For instance, decoding problems related to algebraic codes and rewriting problems in non-abelian groups are explored with cryptographic applications in mind. New results on the algebraic properties or symmetric cryptographic tools are also presented, moving ahead in the understanding of their security properties. In addition, post-quantum constructions for digital signatures and key exchange are explored in this Special Issue, exemplifying how (and how not) group theory may be used for developing robust cryptographic tools to withstand quantum attacks.


Modular Functions and Dirichlet Series in Number Theory

Modular Functions and Dirichlet Series in Number Theory

Author: Tom M. Apostol

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 218

ISBN-13: 1461209994

DOWNLOAD EBOOK

A new edition of a classical treatment of elliptic and modular functions with some of their number-theoretic applications, this text offers an updated bibliography and an alternative treatment of the transformation formula for the Dedekind eta function. It covers many topics, such as Hecke’s theory of entire forms with multiplicative Fourier coefficients, and the last chapter recounts Bohr’s theory of equivalence of general Dirichlet series.