Sensors arrays are used in diverse applications across a broad range of disciplines. Regardless of the application, however, the tools of sensor array signal processing remain the same. Furthermore, whether your interest is in acoustic, seismic, mechanical, or electromagnetic wavefields, they all have a common mathematical framework. Mastering this
A comprehensive guide to the theory and practice of signal enhancement and array signal processing, including matlab codes, exercises and instructor and solution manuals Systematically introduces the fundamental principles, theory and applications of signal enhancement and array signal processing in an accessible manner Offers an updated and relevant treatment of array signal processing with rigor and concision Features a companion website that includes presentation files with lecture notes, homework exercises, course projects, solution manuals, instructor manuals, and Matlab codes for the examples in the book
Introduction to Adaptive Arrays serves as an introduction to the subject of adaptive sensor systems whose principle purpose is to enhance the detection and reception of certain desired signals. The field of array sensor systems is now a maturing technology. With applications of these systems growing more and more numerous, there is a wealth of widely scattered literature on various aspects of such systems. Unfortunately, few books attempt to provide an integrated treatment of the entire system that gives the reader the perspective to organize the available literature into easily understood parts. Intended for use both as a graduate level textbook and as a reference work for engineers, scientists, and systems analysts, this book provides such an integrated treatment by emphasizing the principles and techniques that are of fundamental importance in modern adaptive array systems.
Master the basic concepts and methodologies of digital signal processing with this systematic introduction, without the need for an extensive mathematical background. The authors lead the reader through the fundamental mathematical principles underlying the operation of key signal processing techniques, providing simple arguments and cases rather than detailed general proofs. Coverage of practical implementation, discussion of the limitations of particular methods and plentiful MATLAB illustrations allow readers to better connect theory and practice. A focus on algorithms that are of theoretical importance or useful in real-world applications ensures that students cover material relevant to engineering practice, and equips students and practitioners alike with the basic principles necessary to apply DSP techniques to a variety of applications. Chapters include worked examples, problems and computer experiments, helping students to absorb the material they have just read. Lecture slides for all figures and solutions to the numerous problems are available to instructors.
This is the first book on the market to bring together material on array signal processing in a coherent fashion, with uniform notation and convention of models. KEY TOPICS: Using extensive examples and problems, it presents not only the theories of propagating waves and conventional array processing algorithms, but also the underlying ideas of adaptive array processing and multi-array tracking algorithms. This manual will be valuable to engineers who wish to practice and advance their careers in the array signal processing field.
With a novel, less classical approach to the subject, the authors have written a book with the conviction that signal processing should be taught to be fun. The treatment is therefore less focused on the mathematics and more on the conceptual aspects, the idea being to allow the readers to think about the subject at a higher conceptual level, thus building the foundations for more advanced topics. The book remains an engineering text, with the goal of helping students solve real-world problems. In this vein, the last chapter pulls together the individual topics as discussed throughout the book into an in-depth look at the development of an end-to-end communication system, namely, a modem for communicating digital information over an analog channel.
Photoplethysmography: Technology, Signal Analysis, and Applications is the first comprehensive volume on the theory, principles, and technology (sensors and electronics) of photoplethysmography (PPG). It provides a detailed description of the current state-of-the-art technologies/optical components enabling the extreme miniaturization of such sensors, as well as comprehensive coverage of PPG signal analysis techniques including machine learning and artificial intelligence. The book also outlines the huge range of PPG applications in healthcare, with a strong focus on the contribution of PPG in wearable sensors and PPG for cardiovascular assessment. - Presents the underlying principles and technology surrounding PPG - Includes applications for healthcare and wellbeing - Focuses on PPG in wearable sensors and devices - Presents advanced signal analysis techniques - Includes cutting-edge research, applications and future directions
The radar, besides camera and Lidar systems, is a core sensor to enable autonomous driving. The relatively limited angular resolution is the major drawback of the radar. This thesis shows the development of a conceptual future radar system for automotive applications. The focus is on providing a large antenna aperture to achieve the required high angular resolution. Two genetic algorithms are developed to optimize the antenna array for a good side lobe level while providing high angular resolution. Two demonstrators are built to implement certain aspects of the proposed radar system and prove the general concept viable. The first demonstrator features a large aperture with a limited side lobe level and is using a modular approach. The modules are synchronized with a radio over fiber system. The second demonstrator uses the previously proposed antenna array, which is implemented with a synthetic aperture radar approach. The system’s capabilities in a real scenario are demonstrated, and the reconstruction of a high-resolution three-dimensional image from the captured data is shown. Das Radar stellt, neben Kamera- und Lidar-Systemen, einen zentralen Sensor für das autonome Fahren dar. Dabei ist die relativ geringe Winelauflösung der primäre Nachteil des Radars. Diese Arbeit zeigt die Entwicklung eines konzeptionellen zukünftigen Radarsystems für automobile Anwendungen. Der Schwerpunkt liegt auf der Umsetzung einer großen Antennenapertur, um die erforderliche hohe Winkelauflösung zu erreichen. Zwei evolutionäre Algorithmen werden vorgestellt, um das Antennen-Array auf einen guten Nebenkeulen-Pegel zu optimieren und gleichzeitig eine hohe Winkelauflösung zu erreichen. Zwei Demonstratoren werden gebaut, um bestimmte Aspekte des vorgeschlagenen Radarsystems zu implementieren und die Durchführbarkeit des allgemeinen Konzepts zu zeigen. Der erste Demonstrator weist eine große Apertur mit einem begrenzten Nebenkeulen-Niveau auf und verwendet einen modularen Ansatz. Die Module sind mit einem Radio-over-Fiber-System synchronisiert. Der zweite Demonstrator verwendet die zuvor entworfene Antennenanordnung, die mit einem Radar mit synthetischer Apertur realisiert wird. Die Fähigkeiten des Systems werden in einem realen Szenario demonstriert und die Rekonstruktion eines hochauflösenden dreidimensionalen Bildes aus den erfassten Daten gezeigt.
The essential introduction to the principles and applications of feedback systems—now fully revised and expanded This textbook covers the mathematics needed to model, analyze, and design feedback systems. Now more user-friendly than ever, this revised and expanded edition of Feedback Systems is a one-volume resource for students and researchers in mathematics and engineering. It has applications across a range of disciplines that utilize feedback in physical, biological, information, and economic systems. Karl Åström and Richard Murray use techniques from physics, computer science, and operations research to introduce control-oriented modeling. They begin with state space tools for analysis and design, including stability of solutions, Lyapunov functions, reachability, state feedback observability, and estimators. The matrix exponential plays a central role in the analysis of linear control systems, allowing a concise development of many of the key concepts for this class of models. Åström and Murray then develop and explain tools in the frequency domain, including transfer functions, Nyquist analysis, PID control, frequency domain design, and robustness. Features a new chapter on design principles and tools, illustrating the types of problems that can be solved using feedback Includes a new chapter on fundamental limits and new material on the Routh-Hurwitz criterion and root locus plots Provides exercises at the end of every chapter Comes with an electronic solutions manual An ideal textbook for undergraduate and graduate students Indispensable for researchers seeking a self-contained resource on control theory