Sensitivity Analysis in Practice

Sensitivity Analysis in Practice

Author: Andrea Saltelli

Publisher: John Wiley & Sons

Published: 2004-07-16

Total Pages: 232

ISBN-13: 047087094X

DOWNLOAD EBOOK

Sensitivity analysis should be considered a pre-requisite for statistical model building in any scientific discipline where modelling takes place. For a non-expert, choosing the method of analysis for their model is complex, and depends on a number of factors. This book guides the non-expert through their problem in order to enable them to choose and apply the most appropriate method. It offers a review of the state-of-the-art in sensitivity analysis, and is suitable for a wide range of practitioners. It is focussed on the use of SIMLAB – a widely distributed freely-available sensitivity analysis software package developed by the authors – for solving problems in sensitivity analysis of statistical models. Other key features: Provides an accessible overview of the current most widely used methods for sensitivity analysis. Opens with a detailed worked example to explain the motivation behind the book. Includes a range of examples to help illustrate the concepts discussed. Focuses on implementation of the methods in the software SIMLAB - a freely-available sensitivity analysis software package developed by the authors. Contains a large number of references to sources for further reading. Authored by the leading authorities on sensitivity analysis.


Modelling Optimization and Control of Biomedical Systems

Modelling Optimization and Control of Biomedical Systems

Author: Efstratios N. Pistikopoulos

Publisher: John Wiley & Sons

Published: 2018-01-09

Total Pages: 326

ISBN-13: 1118965590

DOWNLOAD EBOOK

Shows the newest developments in the field of multi-parametric model predictive control and optimization and their application for drug delivery systems This book is based on the Modelling, Control and Optimization of Biomedical Systems (MOBILE) project, which was created to derive intelligent computer model-based systems for optimization of biomedical drug delivery systems in the cases of diabetes, anaesthesia, and blood cancer. These systems can ensure reliable and fast calculation of the optimal drug dosage without the need for an online computer—while taking into account the specifics and constraints of the patient model, flexibility to adapt to changing patient characteristics and incorporation of the physician’s performance criteria, and maintaining the safety of the patients. Modelling Optimization and Control of Biomedical Systems covers: mathematical modelling of drug delivery systems; model analysis, parameter estimation, and approximation; optimization and control; sensitivity analysis & model reduction; multi-parametric programming and model predictive control; estimation techniques; physiologically-based patient model; control design for volatile anaesthesia; multiparametric model based approach to intravenous anaesthesia; hybrid model predictive control strategies; Type I Diabetes Mellitus; in vitro and in silico block of the integrated platform for the study of leukaemia; chemotherapy treatment as a process systems application; and more. Introduces readers to the Modelling, Control and Optimization of Biomedical Systems (MOBILE) project Presents in detail the theoretical background, computational tools, and methods that are used in all the different biomedical systems Teaches the theory for multi-parametric mixed-integer programming and explicit optimal control of volatile anaesthesia Provides an overview of the framework for modelling, optimization, and control of biomedical systems This book will appeal to students, researchers, and scientists working on the modelling, control, and optimization of biomedical systems and to those involved in cancer treatment, anaesthsia, and drug delivery systems.


Dynamic Network User Equilibrium

Dynamic Network User Equilibrium

Author: Terry L. Friesz

Publisher: Springer Nature

Published: 2023-08-07

Total Pages: 401

ISBN-13: 303125564X

DOWNLOAD EBOOK

This book presents advanced research in a relatively new field of scholarly inquiry that is usually referred to as dynamic network user equilibrium, now almost universally abbreviated as DUE. It provides the first synthesis of results obtained over the last decade from applying the differential variational inequality (DVI) formalism to study the DUE problem. In particular, it explores the intimately related problem of dynamic network loading, which determines the arc flows and effective travel delays (or generalized travel costs) arising from the expression of departure rates at the origins of commuter trips between the workplace and home. In particular, the authors show that dynamic network loading with spillback of queues into upstream arcs may be formulated as a differential algebraic equation system. They demonstrate how the dynamic network loading problem and the dynamic traffic user equilibrium problem may be solved simultaneously rather than sequentially, as well as how the first-in-first-out queue discipline may be maintained for each when Lighthill-Whitham-Richardson traffic flow theory is used. A number of recent and new extensions of the DVI-based theory of DUE and corresponding examples are presented and discussed. Relevant mathematical background material is provided to make the book as accessible as possible.


Global Sensitivity Analysis

Global Sensitivity Analysis

Author: Andrea Saltelli

Publisher: John Wiley & Sons

Published: 2008-02-28

Total Pages: 304

ISBN-13: 9780470725177

DOWNLOAD EBOOK

Complex mathematical and computational models are used in all areas of society and technology and yet model based science is increasingly contested or refuted, especially when models are applied to controversial themes in domains such as health, the environment or the economy. More stringent standards of proofs are demanded from model-based numbers, especially when these numbers represent potential financial losses, threats to human health or the state of the environment. Quantitative sensitivity analysis is generally agreed to be one such standard. Mathematical models are good at mapping assumptions into inferences. A modeller makes assumptions about laws pertaining to the system, about its status and a plethora of other, often arcane, system variables and internal model settings. To what extent can we rely on the model-based inference when most of these assumptions are fraught with uncertainties? Global Sensitivity Analysis offers an accessible treatment of such problems via quantitative sensitivity analysis, beginning with the first principles and guiding the reader through the full range of recommended practices with a rich set of solved exercises. The text explains the motivation for sensitivity analysis, reviews the required statistical concepts, and provides a guide to potential applications. The book: Provides a self-contained treatment of the subject, allowing readers to learn and practice global sensitivity analysis without further materials. Presents ways to frame the analysis, interpret its results, and avoid potential pitfalls. Features numerous exercises and solved problems to help illustrate the applications. Is authored by leading sensitivity analysis practitioners, combining a range of disciplinary backgrounds. Postgraduate students and practitioners in a wide range of subjects, including statistics, mathematics, engineering, physics, chemistry, environmental sciences, biology, toxicology, actuarial sciences, and econometrics will find much of use here. This book will prove equally valuable to engineers working on risk analysis and to financial analysts concerned with pricing and hedging.


Structural Dynamic Systems Com

Structural Dynamic Systems Com

Author: Cornelius T. Leondes

Publisher: CRC Press

Published: 1999-01-27

Total Pages: 274

ISBN-13: 9789056996420

DOWNLOAD EBOOK

The availability of powerful computers along with highly effective computational techniques have allowed computer-aided design and engineering of structural dynamics systems to achieve a high level of capability and importance. This volume clearly reveals the great significance of these techniques and the essential role they will play in the future as further development occurs. This will be a significant and unique reference for students, research workers, practitioners, computer scientists and others for years to come.


Computer Aided Analysis and Optimization of Mechanical System Dynamics

Computer Aided Analysis and Optimization of Mechanical System Dynamics

Author: E. J. Haug

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 706

ISBN-13: 3642524656

DOWNLOAD EBOOK

These proceedings contain lectures presented at the NATO-NSF-ARO sponsored Advanced Study I~stitute on "Computer Aided Analysis and Optimization of Mechanical System Dynamics" held in Iowa City, Iowa, 1-12 August, 1983. Lectures were presented by free world leaders in the field of machine dynamics and optimization. Participants in the Institute were specialists from throughout NATO, many of whom presented contributed papers during the Institute and all of whom participated actively in discussions on technical aspects of the subject. The proceedings are organized into five parts, each addressing a technical aspect of the field of computational methods in dynamic analysis and design of mechanical systems. The introductory paper presented first in the text outlines some of the numerous technical considerations that must be given to organizing effective and efficient computational methods and computer codes to serve engineers in dynamic analysis and design of mechanical systems. Two substantially different approaches to the field are identified in this introduction and are given attention throughout the text. The first and most classical approach uses a minimal set of Lagrangian generalized coordinates to formulate equations of motion with a small number of constraints. The second method uses a maximal set of cartesian coordinates and leads to a large number of differential and algebraic constraint equations of rather simple form. These fundamentally different approaches and associated methods of symbolic computation, numerical integration, and use of computer graphics are addressed throughout the proceedings.


Water Treatment

Water Treatment

Author: Walid Elshorbagy

Publisher: BoD – Books on Demand

Published: 2013-01-16

Total Pages: 396

ISBN-13: 9535109286

DOWNLOAD EBOOK

Economic development, population growth, and environmental pollution evolving in many parts of the world are placing great demands on existing resources of fresh water and reflecting a "water crisis". Resource management, efficient utilization of the water resources, and above all water purification are all alternatives to resolve the water crisis. Purification approaches include traditional approaches that have lasted for several centuries without major modifications as well as new innovative approaches. This book covers a number of water quality issues relevant to either improving the existing treatment methods or to new advanced approaches. The book has 15 chapters distributed over four sections titled: [1] Management and Modeling of Treatment Systems, [2] Advanced Treatment Processes, [3] Treatment of Organic-contaminated Water, and [4] Advanced Monitoring Techniques.


Advanced Design of Mechanical Systems: From Analysis to Optimization

Advanced Design of Mechanical Systems: From Analysis to Optimization

Author: Jorge A.C. Ambrosio

Publisher: Springer Science & Business Media

Published: 2009-11-25

Total Pages: 426

ISBN-13: 3211994610

DOWNLOAD EBOOK

Multibody systems are used extensively in the investigation of mechanical systems including structural and non-structural applications. It can be argued that among all the areas in solid mechanics the methodologies and applications associated to multibody dynamics are those that provide an ideal framework to aggregate d- ferent disciplines. This idea is clearly reflected, e. g. , in the multidisciplinary applications in biomechanics that use multibody dynamics to describe the motion of the biological entities, in finite elements where multibody dynamics provides - werful tools to describe large motion and kinematic restrictions between system components, in system control where the methodologies used in multibody dynamics are the prime form of describing the systems under analysis, or even in many - plications that involve fluid-structure interaction or aero elasticity. The development of industrial products or the development of analysis tools, using multibody dynamics methodologies, requires that the final result of the devel- ments are the best possible within some limitations, i. e. , they must be optimal. Furthermore, the performance of the developed systems must either be relatively insensitive to some of their design parameters or be sensitive in a controlled manner to other variables. Therefore, the sensitivity analysis of such systems is fundamental to support the decision making process. This book presents a broad range of tools for designing mechanical systems ranging from the kinematic and dynamic analysis of rigid and flexible multibody systems to their advanced optimization.