Semiconductor Physics and Devices

Semiconductor Physics and Devices

Author: Donald A. Neamen

Publisher:

Published: 2003

Total Pages: 746

ISBN-13: 9780071198622

DOWNLOAD EBOOK

This text aims to provide the fundamentals necessary to understand semiconductor device characteristics, operations and limitations. Quantum mechanics and quantum theory are explored, and this background helps give students a deeper understanding of the essentials of physics and semiconductors.


Physics of Semiconductor Devices

Physics of Semiconductor Devices

Author: Simon M. Sze

Publisher: John Wiley & Sons

Published: 2006-12-13

Total Pages: 828

ISBN-13: 0470068302

DOWNLOAD EBOOK

The Third Edition of the standard textbook and reference in the field of semiconductor devices This classic book has set the standard for advanced study and reference in the semiconductor device field. Now completely updated and reorganized to reflect the tremendous advances in device concepts and performance, this Third Edition remains the most detailed and exhaustive single source of information on the most important semiconductor devices. It gives readers immediate access to detailed descriptions of the underlying physics and performance characteristics of all major bipolar, field-effect, microwave, photonic, and sensor devices. Designed for graduate textbook adoptions and reference needs, this new edition includes: A complete update of the latest developments New devices such as three-dimensional MOSFETs, MODFETs, resonant-tunneling diodes, semiconductor sensors, quantum-cascade lasers, single-electron transistors, real-space transfer devices, and more Materials completely reorganized Problem sets at the end of each chapter All figures reproduced at the highest quality Physics of Semiconductor Devices, Third Edition offers engineers, research scientists, faculty, and students a practical basis for understanding the most important devices in use today and for evaluating future device performance and limitations. A Solutions Manual is available from the editorial department.


Fundamentals of Semiconductors

Fundamentals of Semiconductors

Author: Peter YU

Publisher: Springer Science & Business Media

Published: 2007-05-08

Total Pages: 651

ISBN-13: 3540264752

DOWNLOAD EBOOK

Excellent bridge between general solid-state physics textbook and research articles packed with providing detailed explanations of the electronic, vibrational, transport, and optical properties of semiconductors "The most striking feature of the book is its modern outlook ... provides a wonderful foundation. The most wonderful feature is its efficient style of exposition ... an excellent book." Physics Today "Presents the theoretical derivations carefully and in detail and gives thorough discussions of the experimental results it presents. This makes it an excellent textbook both for learners and for more experienced researchers wishing to check facts. I have enjoyed reading it and strongly recommend it as a text for anyone working with semiconductors ... I know of no better text ... I am sure most semiconductor physicists will find this book useful and I recommend it to them." Contemporary Physics Offers much new material: an extensive appendix about the important and by now well-established, deep center known as the DX center, additional problems and the solutions to over fifty of the problems at the end of the various chapters.


The Physics of Semiconductors

The Physics of Semiconductors

Author: Marius Grundmann

Publisher: Springer Nature

Published: 2021-03-06

Total Pages: 905

ISBN-13: 3030515699

DOWNLOAD EBOOK

The 4th edition of this highly successful textbook features copious material for a complete upper-level undergraduate or graduate course, guiding readers to the point where they can choose a specialized topic and begin supervised research. The textbook provides an integrated approach beginning from the essential principles of solid-state and semiconductor physics to their use in various classic and modern semiconductor devices for applications in electronics and photonics. The text highlights many practical aspects of semiconductors: alloys, strain, heterostructures, nanostructures, amorphous semiconductors, and noise, which are essential aspects of modern semiconductor research but often omitted in other textbooks. This textbook also covers advanced topics, such as Bragg mirrors, resonators, polarized and magnetic semiconductors, nanowires, quantum dots, multi-junction solar cells, thin film transistors, and transparent conductive oxides. The 4th edition includes many updates and chapters on 2D materials and aspects of topology. The text derives explicit formulas for many results to facilitate a better understanding of the topics. Having evolved from a highly regarded two-semester course on the topic, The Physics of Semiconductors requires little or no prior knowledge of solid-state physics. More than 2100 references guide the reader to historic and current literature including original papers, review articles and topical books, providing a go-to point of reference for experienced researchers as well.


Basic Semiconductor Physics

Basic Semiconductor Physics

Author: Chihiro Hamaguchi

Publisher: Springer

Published: 2017-11-27

Total Pages: 723

ISBN-13: 3319668609

DOWNLOAD EBOOK

The new edition of this textbook presents a detailed description of basic semiconductor physics. The text covers a wide range of important phenomena in semiconductors, from the simple to the advanced. Four different methods of energy band calculations in the full band region are explained: local empirical pseudopotential, non-local pseudopotential, KP perturbation and tight-binding methods. The effective mass approximation and electron motion in a periodic potential, Boltzmann transport equation and deformation potentials used for analysis of transport properties are discussed. Further, the book examines experiments and theoretical analyses of cyclotron resonance in detail. Optical and transport properties, magneto-transport, two-dimensional electron gas transport (HEMT and MOSFET) and quantum transport are reviewed, while optical transition, electron-phonon interaction and electron mobility are also addressed. Energy and electronic structure of a quantum dot (artificial atom) are explained with the help of Slater determinants. The physics of semiconductor lasers is also described, including Einstein coefficients, stimulated emission, spontaneous emission, laser gain, double heterostructures, blue lasers, optical confinement, laser modes, and strained quantum well lasers, offering insights into the physics of various kinds of semiconductor lasers. In this third edition, energy band calculations in full band zone with spin-orbit interaction are presented, showing all the matrix elements and equipping the reader to prepare computer programs of energy band calculations. The Luttinger Hamiltonian is discussed and used to analyze the valence band structure. Numerical calculations of scattering rate, relaxation time, and mobility are presented for typical semiconductors, which are very helpful for understanding of transport. Energy band structures and effective masses of nitrides such as GaN, InN, AlN and their ternary alloys are discussed because they are very important materials for the blue light emission, and high power devices with and high frequency. Learning and teaching with this textbook is supported by problems and solutions in the end of the chapters. The book is written for bachelor and upper undergraduate students of physics and engineering.


Basic Semiconductor Physics

Basic Semiconductor Physics

Author: Chihiro Hamaguchi

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 444

ISBN-13: 3662046563

DOWNLOAD EBOOK

A detailed description of the basic physics of semiconductors. All the important equations describing the properties of these materials are derived without the help of other textbooks. The reader is assumed to have only a basic command of mathematics and some elementary semiconductor physics. The text covers a wide range of important semiconductor phenomena, from the simple to the advanced.


Modern Semiconductor Device Physics

Modern Semiconductor Device Physics

Author: S. M. Sze

Publisher: Wiley-Interscience

Published: 1998

Total Pages: 584

ISBN-13:

DOWNLOAD EBOOK

An in-depth, up-to-date presentation of the physics and operational principles of all modern semiconductor devices The companion volume to Dr. Sze's classic Physics of Semiconductor Devices, Modern Semiconductor Device Physics covers all the significant advances in the field over the past decade. To provide the most authoritative, state-of-the-art information on this rapidly developing technology, Dr. Sze has gathered the contributions of world-renowned experts in each area. Principal topics include bipolar transistors, compound-semiconductor field-effect-transistors, MOSFET and related devices, power devices, quantum-effect and hot-electron devices, active microwave diodes, high-speed photonic devices, and solar cells. Supported by hundreds of illustrations and references and a problem set at the end of each chapter, Modern Semiconductor Device Physics is the essential text/reference for electrical engineers, physicists, material scientists, and graduate students actively working in microelectronics and related fields.


Introduction To Semiconductor Physics

Introduction To Semiconductor Physics

Author: Holger T Grahn

Publisher: World Scientific Publishing Company

Published: 1999-04-19

Total Pages: 203

ISBN-13: 9813105151

DOWNLOAD EBOOK

This book covers the physics of semiconductors on an introductory level, assuming that the reader already has some knowledge of condensed matter physics. Crystal structure, band structure, carrier transport, phonons, scattering processes and optical properties are presented for typical semiconductors such as silicon, but III-V and II-VI compounds are also included. In view of the increasing importance of wide-gap semiconductors, the electronic and optical properties of these materials are dealt with too.


Physics of Semiconductor Devices

Physics of Semiconductor Devices

Author: J.-P. Colinge

Publisher: Springer Science & Business Media

Published: 2007-05-08

Total Pages: 442

ISBN-13: 0306476223

DOWNLOAD EBOOK

Physics of Semiconductor Devices covers both basic classic topics such as energy band theory and the gradual-channel model of the MOSFET as well as advanced concepts and devices such as MOSFET short-channel effects, low-dimensional devices and single-electron transistors. Concepts are introduced to the reader in a simple way, often using comparisons to everyday-life experiences such as simple fluid mechanics. They are then explained in depth and mathematical developments are fully described. Physics of Semiconductor Devices contains a list of problems that can be used as homework assignments or can be solved in class to exemplify the theory. Many of these problems make use of Matlab and are aimed at illustrating theoretical concepts in a graphical manner.


Modern Semiconductor Physics and Device Applications

Modern Semiconductor Physics and Device Applications

Author: Vitalii K Dugaev

Publisher: CRC Press

Published: 2021-11-15

Total Pages: 397

ISBN-13: 1000462293

DOWNLOAD EBOOK

This textbook provides a theoretical background for contemporary trends in solid-state theory and semiconductor device physics. It discusses advanced methods of quantum mechanics and field theory and is therefore primarily intended for graduate students in theoretical and experimental physics who have already studied electrodynamics, statistical physics, and quantum mechanics. It also relates solid-state physics fundamentals to semiconductor device applications and includes auxiliary results from mathematics and quantum mechanics, making the book useful also for graduate students in electrical engineering and material science. Key Features: Explores concepts common in textbooks on semiconductors, in addition to topics not included in similar books currently available on the market, such as the topology of Hilbert space in crystals Contains the latest research and developments in the field Written in an accessible yet rigorous manner