AI 2019: Advances in Artificial Intelligence

AI 2019: Advances in Artificial Intelligence

Author: Jixue Liu

Publisher: Springer Nature

Published: 2019-11-25

Total Pages: 622

ISBN-13: 3030352889

DOWNLOAD EBOOK

This book constitutes the proceedings of the 32nd Australasian Joint Conference on Artificial Intelligence, AI 2019, held in Adelaide, SA, Australia, in December 2019. The 48 full papers presented in this volume were carefully reviewed and selected from 115 submissions. The paper were organized in topical sections named: game and multiagent systems; knowledge acquisition, representation, reasoning; machine learning and applications; natural language processing and text analytics; optimization and evolutionary computing; and image processing.


Dynamic Data Driven Applications Systems

Dynamic Data Driven Applications Systems

Author: Frederica Darema

Publisher: Springer Nature

Published: 2020-11-02

Total Pages: 356

ISBN-13: 3030617254

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the Third International Conference on Dynamic Data Driven Application Systems, DDDAS 2020, held in Boston, MA, USA, in October 2020. The 21 full papers and 14 short papers presented in this volume were carefully reviewed and selected from 40 submissions. They cover topics such as: digital twins; environment cognizant adaptive-planning systems; energy systems; materials systems; physics-based systems analysis; imaging methods and systems; and learning systems.


Hyperspectral Image Analysis

Hyperspectral Image Analysis

Author: Saurabh Prasad

Publisher: Springer Nature

Published: 2020-04-27

Total Pages: 464

ISBN-13: 3030386171

DOWNLOAD EBOOK

This book reviews the state of the art in algorithmic approaches addressing the practical challenges that arise with hyperspectral image analysis tasks, with a focus on emerging trends in machine learning and image processing/understanding. It presents advances in deep learning, multiple instance learning, sparse representation based learning, low-dimensional manifold models, anomalous change detection, target recognition, sensor fusion and super-resolution for robust multispectral and hyperspectral image understanding. It presents research from leading international experts who have made foundational contributions in these areas. The book covers a diverse array of applications of multispectral/hyperspectral imagery in the context of these algorithms, including remote sensing, face recognition and biomedicine. This book would be particularly beneficial to graduate students and researchers who are taking advanced courses in (or are working in) the areas of image analysis, machine learning and remote sensing with multi-channel optical imagery. Researchers and professionals in academia and industry working in areas such as electrical engineering, civil and environmental engineering, geosciences and biomedical image processing, who work with multi-channel optical data will find this book useful.


AI 2020: Advances in Artificial Intelligence

AI 2020: Advances in Artificial Intelligence

Author: Marcus Gallagher

Publisher: Springer Nature

Published: 2020-11-27

Total Pages: 472

ISBN-13: 3030649849

DOWNLOAD EBOOK

This book constitutes the proceedings of the 33rd Australasian Joint Conference on Artificial Intelligence, AI 2020, held in Canberra, ACT, Australia, in November 2020.* The 36 full papers presented in this volume were carefully reviewed and selected from 57 submissions. The paper were organized in topical sections named: applications; evolutionary computation; fairness and ethics; games and swarms; and machine learning. *The conference was held virtually due to the COVID-19 pandemic.


Hands-On Meta Learning with Python

Hands-On Meta Learning with Python

Author: Sudharsan Ravichandiran

Publisher: Packt Publishing Ltd

Published: 2018-12-31

Total Pages: 218

ISBN-13: 1789537029

DOWNLOAD EBOOK

Explore a diverse set of meta-learning algorithms and techniques to enable human-like cognition for your machine learning models using various Python frameworks Key FeaturesUnderstand the foundations of meta learning algorithmsExplore practical examples to explore various one-shot learning algorithms with its applications in TensorFlowMaster state of the art meta learning algorithms like MAML, reptile, meta SGDBook Description Meta learning is an exciting research trend in machine learning, which enables a model to understand the learning process. Unlike other ML paradigms, with meta learning you can learn from small datasets faster. Hands-On Meta Learning with Python starts by explaining the fundamentals of meta learning and helps you understand the concept of learning to learn. You will delve into various one-shot learning algorithms, like siamese, prototypical, relation and memory-augmented networks by implementing them in TensorFlow and Keras. As you make your way through the book, you will dive into state-of-the-art meta learning algorithms such as MAML, Reptile, and CAML. You will then explore how to learn quickly with Meta-SGD and discover how you can perform unsupervised learning using meta learning with CACTUs. In the concluding chapters, you will work through recent trends in meta learning such as adversarial meta learning, task agnostic meta learning, and meta imitation learning. By the end of this book, you will be familiar with state-of-the-art meta learning algorithms and able to enable human-like cognition for your machine learning models. What you will learnUnderstand the basics of meta learning methods, algorithms, and typesBuild voice and face recognition models using a siamese networkLearn the prototypical network along with its variantsBuild relation networks and matching networks from scratchImplement MAML and Reptile algorithms from scratch in PythonWork through imitation learning and adversarial meta learningExplore task agnostic meta learning and deep meta learningWho this book is for Hands-On Meta Learning with Python is for machine learning enthusiasts, AI researchers, and data scientists who want to explore meta learning as an advanced approach for training machine learning models. Working knowledge of machine learning concepts and Python programming is necessary.


Machine Learning in Medical Imaging

Machine Learning in Medical Imaging

Author: Mingxia Liu

Publisher: Springer Nature

Published: 2020-10-02

Total Pages: 702

ISBN-13: 3030598616

DOWNLOAD EBOOK

This book constitutes the proceedings of the 11th International Workshop on Machine Learning in Medical Imaging, MLMI 2020, held in conjunction with MICCAI 2020, in Lima, Peru, in October 2020. The conference was held virtually due to the COVID-19 pandemic. The 68 papers presented in this volume were carefully reviewed and selected from 101 submissions. They focus on major trends and challenges in the above-mentioned area, aiming to identify new-cutting-edge techniques and their uses in medical imaging. Topics dealt with are: deep learning, generative adversarial learning, ensemble learning, sparse learning, multi-task learning, multi-view learning, manifold learning, and reinforcement learning, with their applications to medical image analysis, computer-aided detection and diagnosis, multi-modality fusion, image reconstruction, image retrieval, cellular image analysis, molecular imaging, digital pathology, etc.


Medical Image Computing and Computer Assisted Intervention – MICCAI 2022

Medical Image Computing and Computer Assisted Intervention – MICCAI 2022

Author: Linwei Wang

Publisher: Springer Nature

Published: 2022-09-15

Total Pages: 802

ISBN-13: 3031164342

DOWNLOAD EBOOK

The eight-volume set LNCS 13431, 13432, 13433, 13434, 13435, 13436, 13437, and 13438 constitutes the refereed proceedings of the 25th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2022, which was held in Singapore in September 2022. The 574 revised full papers presented were carefully reviewed and selected from 1831 submissions in a double-blind review process. The papers are organized in the following topical sections: Part I: Brain development and atlases; DWI and tractography; functional brain networks; neuroimaging; heart and lung imaging; dermatology; Part II: Computational (integrative) pathology; computational anatomy and physiology; ophthalmology; fetal imaging; Part III: Breast imaging; colonoscopy; computer aided diagnosis; Part IV: Microscopic image analysis; positron emission tomography; ultrasound imaging; video data analysis; image segmentation I; Part V: Image segmentation II; integration of imaging with non-imaging biomarkers; Part VI: Image registration; image reconstruction; Part VII: Image-Guided interventions and surgery; outcome and disease prediction; surgical data science; surgical planning and simulation; machine learning – domain adaptation and generalization; Part VIII: Machine learning – weakly-supervised learning; machine learning – model interpretation; machine learning – uncertainty; machine learning theory and methodologies.


Fast and Low-Resource Semi-supervised Abdominal Organ Segmentation

Fast and Low-Resource Semi-supervised Abdominal Organ Segmentation

Author: Jun Ma

Publisher: Springer Nature

Published: 2023-01-20

Total Pages: 338

ISBN-13: 3031239113

DOWNLOAD EBOOK

This book constitutes the proceedings of the MICCAI 2022 Challenge, FLARE 2022, held in Conjunction with MICCAI 2022, in Singapore, on September 22, 2022. The 28 full papers presented in this book were carefully reviewed and selected from 48 submissions. The papers present research and results for abdominal organ segmentation which has many important clinical applications, such as organ quantification, surgical planning, and disease diagnosis.