Self-learning Anomaly Detection in Industrial Production

Self-learning Anomaly Detection in Industrial Production

Author: Meshram, Ankush

Publisher: KIT Scientific Publishing

Published: 2023-06-19

Total Pages: 224

ISBN-13: 3731512572

DOWNLOAD EBOOK

Configuring an anomaly-based Network Intrusion Detection System for cybersecurity of an industrial system in the absence of information on networking infrastructure and programmed deterministic industrial process is challenging. Within the research work, different self-learning frameworks to analyze passively captured network traces from PROFINET-based industrial system for protocol-based and process behavior-based anomaly detection are developed, and evaluated on a real-world industrial system.


Outlier Analysis

Outlier Analysis

Author: Charu C. Aggarwal

Publisher: Springer

Published: 2016-12-10

Total Pages: 481

ISBN-13: 3319475789

DOWNLOAD EBOOK

This book provides comprehensive coverage of the field of outlier analysis from a computer science point of view. It integrates methods from data mining, machine learning, and statistics within the computational framework and therefore appeals to multiple communities. The chapters of this book can be organized into three categories: Basic algorithms: Chapters 1 through 7 discuss the fundamental algorithms for outlier analysis, including probabilistic and statistical methods, linear methods, proximity-based methods, high-dimensional (subspace) methods, ensemble methods, and supervised methods. Domain-specific methods: Chapters 8 through 12 discuss outlier detection algorithms for various domains of data, such as text, categorical data, time-series data, discrete sequence data, spatial data, and network data. Applications: Chapter 13 is devoted to various applications of outlier analysis. Some guidance is also provided for the practitioner. The second edition of this book is more detailed and is written to appeal to both researchers and practitioners. Significant new material has been added on topics such as kernel methods, one-class support-vector machines, matrix factorization, neural networks, outlier ensembles, time-series methods, and subspace methods. It is written as a textbook and can be used for classroom teaching.


Intelligent Systems and Applications

Intelligent Systems and Applications

Author: Kohei Arai

Publisher: Springer Nature

Published: 2021-08-02

Total Pages: 858

ISBN-13: 303082196X

DOWNLOAD EBOOK

This book presents Proceedings of the 2021 Intelligent Systems Conference which is a remarkable collection of chapters covering a wider range of topics in areas of intelligent systems and artificial intelligence and their applications to the real world. The conference attracted a total of 496 submissions from many academic pioneering researchers, scientists, industrial engineers, and students from all around the world. These submissions underwent a double-blind peer-review process. Of the total submissions, 180 submissions have been selected to be included in these proceedings. As we witness exponential growth of computational intelligence in several directions and use of intelligent systems in everyday applications, this book is an ideal resource for reporting latest innovations and future of AI. The chapters include theory and application on all aspects of artificial intelligence, from classical to intelligent scope. We hope that readers find the book interesting and valuable; it provides the state-of-the-art intelligent methods and techniques for solving real-world problems along with a vision of the future research.


Beginning Anomaly Detection Using Python-Based Deep Learning

Beginning Anomaly Detection Using Python-Based Deep Learning

Author: Sridhar Alla

Publisher: Apress

Published: 2019-10-10

Total Pages: 427

ISBN-13: 1484251776

DOWNLOAD EBOOK

Utilize this easy-to-follow beginner's guide to understand how deep learning can be applied to the task of anomaly detection. Using Keras and PyTorch in Python, the book focuses on how various deep learning models can be applied to semi-supervised and unsupervised anomaly detection tasks. This book begins with an explanation of what anomaly detection is, what it is used for, and its importance. After covering statistical and traditional machine learning methods for anomaly detection using Scikit-Learn in Python, the book then provides an introduction to deep learning with details on how to build and train a deep learning model in both Keras and PyTorch before shifting the focus to applications of the following deep learning models to anomaly detection: various types of Autoencoders, Restricted Boltzmann Machines, RNNs & LSTMs, and Temporal Convolutional Networks. The book explores unsupervised and semi-supervised anomaly detection along with the basics of time series-based anomaly detection. By the end of the book you will have a thorough understanding of the basic task of anomaly detection as well as an assortment of methods to approach anomaly detection, ranging from traditional methods to deep learning. Additionally, you are introduced to Scikit-Learn and are able to create deep learning models in Keras and PyTorch. What You Will LearnUnderstand what anomaly detection is and why it is important in today's world Become familiar with statistical and traditional machine learning approaches to anomaly detection using Scikit-Learn Know the basics of deep learning in Python using Keras and PyTorch Be aware of basic data science concepts for measuring a model's performance: understand what AUC is, what precision and recall mean, and more Apply deep learning to semi-supervised and unsupervised anomaly detection Who This Book Is For Data scientists and machine learning engineers interested in learning the basics of deep learning applications in anomaly detection


Outlier Ensembles

Outlier Ensembles

Author: Charu C. Aggarwal

Publisher: Springer

Published: 2017-04-06

Total Pages: 288

ISBN-13: 3319547658

DOWNLOAD EBOOK

This book discusses a variety of methods for outlier ensembles and organizes them by the specific principles with which accuracy improvements are achieved. In addition, it covers the techniques with which such methods can be made more effective. A formal classification of these methods is provided, and the circumstances in which they work well are examined. The authors cover how outlier ensembles relate (both theoretically and practically) to the ensemble techniques used commonly for other data mining problems like classification. The similarities and (subtle) differences in the ensemble techniques for the classification and outlier detection problems are explored. These subtle differences do impact the design of ensemble algorithms for the latter problem. This book can be used for courses in data mining and related curricula. Many illustrative examples and exercises are provided in order to facilitate classroom teaching. A familiarity is assumed to the outlier detection problem and also to generic problem of ensemble analysis in classification. This is because many of the ensemble methods discussed in this book are adaptations from their counterparts in the classification domain. Some techniques explained in this book, such as wagging, randomized feature weighting, and geometric subsampling, provide new insights that are not available elsewhere. Also included is an analysis of the performance of various types of base detectors and their relative effectiveness. The book is valuable for researchers and practitioners for leveraging ensemble methods into optimal algorithmic design.


Control Charts and Machine Learning for Anomaly Detection in Manufacturing

Control Charts and Machine Learning for Anomaly Detection in Manufacturing

Author: Kim Phuc Tran

Publisher:

Published: 2022

Total Pages: 0

ISBN-13: 9783030838201

DOWNLOAD EBOOK

This book introduces the latest research on advanced control charts and new machine learning approaches to detect abnormalities in the smart manufacturing process. By approaching anomaly detection using both statistics and machine learning, the book promotes interdisciplinary cooperation between the research communities, to jointly develop new anomaly detection approaches that are more suitable for the 4.0 Industrial Revolution. The book provides ready-to-use algorithms and parameter sheets, enabling readers to design advanced control charts and machine learning-based approaches for anomaly detection in manufacturing. Case studies are introduced in each chapter to help practitioners easily apply these tools to real-world manufacturing processes. The book is of interest to researchers, industrial experts, and postgraduate students in the fields of industrial engineering, automation, statistical learning, and manufacturing industries.


Proceedings of the 2022 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory

Proceedings of the 2022 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory

Author: Beyerer, Jürgen

Publisher: KIT Scientific Publishing

Published: 2023-07-05

Total Pages: 140

ISBN-13: 3731513048

DOWNLOAD EBOOK

In August 2022, Fraunhofer IOSB and IES of KIT held a joint workshop in a Schwarzwaldhaus near Triberg. Doctoral students presented research reports and discussed various topics like computer vision, optical metrology, network security, usage control, and machine learning. This book compiles the workshop's results and ideas, offering a comprehensive overview of the research program of IES and Fraunhofer IOSB.


14th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2019)

14th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2019)

Author: Francisco Martínez Álvarez

Publisher: Springer

Published: 2019-04-30

Total Pages: 617

ISBN-13: 3030200558

DOWNLOAD EBOOK

This book includes 57 papers presented at the SOCO 2019 conference held in the historic city of Seville (Spain), in May 2019. Soft computing represents a set of computational techniques in machine learning, computer science and various engineering disciplines, which investigate, simulate, and analyze very complex issues and phenomena. The selection of papers was extremely rigorous in order to maintain the high quality of the conference, which featured a number of special sessions, including sessions on: Soft Computing Methods in Manufacturing and Management Systems; Soft Computing Applications in the Field of Industrial and Environmental Enterprises; Optimization, Modeling and Control by Soft Computing Techniques; and Soft Computing in Aerospace, Mechanical and Civil Engineering: New methods and Industrial Applications.


Special Topics in Information Technology

Special Topics in Information Technology

Author: Barbara Pernici

Publisher: Springer Nature

Published: 2019-10-01

Total Pages: 135

ISBN-13: 3030320944

DOWNLOAD EBOOK

This open access book presents nine outstanding doctoral dissertations in Information Technology from the Department of Electronics, Information and Bioengineering, Politecnico di Milano, Italy. Information Technology has always been highly interdisciplinary, as many aspects have to be considered in IT systems. The doctoral studies program in IT at Politecnico di Milano emphasizes this interdisciplinary nature, which is becoming more and more important in recent technological advances, in collaborative projects, and in the education of young researchers. Accordingly, the focus of advanced research is on pursuing a rigorous approach to specific research topics starting from a broad background in various areas of Information Technology, especially Computer Science and Engineering, Electronics, Systems and Controls, and Telecommunications. Each year, more than 50 PhDs graduate from the program. This book gathers the outcomes of the nine best theses defended in 2018-19 and selected for the IT PhD Award. Each of the nine authors provides a chapter summarizing his/her findings, including an introduction, description of methods, main achievements and future work on the topic. Hence, the book provides a cutting-edge overview of the latest research trends in Information Technology at Politecnico di Milano, presented in an easy-to-read format that will also appeal to non-specialists.