Self-Assembled Peptide Nanostructures

Self-Assembled Peptide Nanostructures

Author: Jaime Castillo

Publisher: CRC Press

Published: 2012-11-21

Total Pages: 318

ISBN-13: 9814364479

DOWNLOAD EBOOK

The self-organization of bionanostructures into well-defined functional machineries found in nature has been a priceless source of ideas for researchers. The molecules of life, proteins, DNA, RNA, etc., as well as the structures and forms that these molecules assume serve as rich sources of ideas for scientists or engineers who are interested in de


Self-Assembled Nanomaterials I

Self-Assembled Nanomaterials I

Author: Toshimi Shimizu

Publisher: Springer Science & Business Media

Published: 2008-09-26

Total Pages: 186

ISBN-13: 354085102X

DOWNLOAD EBOOK

This text was ranked by ISI as having the Highest Impact Factor of all publications within Polymer Science. It is a collection of concise reports on the physics and chemistry of polymers.


Nanostructures for Novel Therapy

Nanostructures for Novel Therapy

Author: Denisa Ficai

Publisher: Elsevier

Published: 2017-02-25

Total Pages: 908

ISBN-13: 0323461484

DOWNLOAD EBOOK

Nanostructures for Novel Therapy: Synthesis, Characterization and Applications focuses on the fabrication and characterization of therapeutic nanostructures, in particular, synthesis, design, and in vitro and in vivo therapeutic evaluation. The chapters provide a cogent overview of recent therapeutic applications of nanostructured materials that includes applications of nanostructured materials for wound healing in plastic surgery and stem cell therapy. The book explores the promise for more effective therapy through the use of nanostructured materials, while also assessing the challenges their use might pose from both an economic and medicinal point of view. This innovative look at how nanostructured materials are used in therapeutics will be of great benefit to researchers, providing a greater understanding of the different ways nanomaterials could improve medical treatment, along with a discussion of the obstacles that need to be overcome in order to guarantee widespread availability. - Outlines how the characteristics of nanostructures made from different materials gives particular properties that can be successfully used in therapeutics - Compares the properties of different nanostructures, allowing medicinal chemists and engineers to select which are most appropriate for their needs - Highlights new uses of nanostructures within the therapeutic field, enabling the discovery of new, more effective drugs


Protein Self-Assembly

Protein Self-Assembly

Author: Jennifer J. McManus

Publisher: Humana

Published: 2020-08-08

Total Pages: 266

ISBN-13: 9781493996803

DOWNLOAD EBOOK

This volume explores experimental and computational approaches to measuring the most widely studied protein assemblies, including condensed liquid phases, aggregates, and crystals. The chapters in this book are organized into three parts: Part One looks at the techniques used to measure protein-protein interactions and equilibrium protein phases in dilute and concentrated protein solutions; Part Two describes methods to measure kinetics of aggregation and to characterize the assembled state; and Part Three details several different computational approaches that are currently used to help researchers understand protein self-assembly. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Thorough and cutting-edge, Protein Self-Assembly: Methods and Protocols is a valuable resource for researchers who are interested in learning more about this developing field.


Peptide-Based Materials

Peptide-Based Materials

Author: Timothy Deming

Publisher: Springer Science & Business Media

Published: 2012-01-10

Total Pages: 184

ISBN-13: 3642271391

DOWNLOAD EBOOK

Synthesis of Polypeptides by Ring-Opening Polymerization of α-Amino Acid N-Carboxyanhydrides, by Jianjun Cheng and Timothy J. Deming.- Peptide Synthesis and Self-Assembly, by S. Maude, L. R. Tai, R. P. W. Davies, B. Liu, S. A. Harris, P. J. Kocienski and A. Aggeli.- Elastomeric Polypeptides, by Mark B. van Eldijk, Christopher L. McGann, Kristi L. Kiick andJan C. M. van Hest.- Self-Assembled Polypeptide and Polypeptide Hybrid Vesicles: From Synthesis to Application, by Uh-Joo Choe, Victor Z. Sun, James-Kevin Y. Tan and Daniel T. Kamei.- Peptide-Based and Polypeptide-Based Hydrogels for Drug Delivery and Tissue Engineering, by Aysegul Altunbas and Darrin J. Pochan.-


Self-Assembled Peptide Nanostructures

Self-Assembled Peptide Nanostructures

Author: Jaime Castillo

Publisher: CRC Press

Published: 2012-11-21

Total Pages: 326

ISBN-13: 9814316946

DOWNLOAD EBOOK

The self-organization of bionanostructures into well-defined functional machineries found in nature has been a priceless source of ideas for researchers. The molecules of life, proteins, DNA, RNA, etc., as well as the structures and forms that these molecules assume serve as rich sources of ideas for scientists or engineers who are interested in developing bio-inspired materials for innovations in biomedical fields. In nature, molecular self-assembly is a process by which complex three-dimensional structures with well-defined functions are constructed, starting from simple building blocks such as proteins and peptides. This book introduces readers to the theory and mechanisms of peptide self-assembly processes. The authors present the more common peptide self-assembled building blocks and discuss how researchers from different fields can apply self-assembling principles to bionanotechnology applications. The advantages and challenges are mentioned together with examples that reflect the state of the art of the use of self-assembled peptide building blocks in nanotechnology.


Molecular Self-Assembly

Molecular Self-Assembly

Author: Alex Li Dequan

Publisher: CRC Press

Published: 2012-12-20

Total Pages: 464

ISBN-13: 9814364312

DOWNLOAD EBOOK

In the past several decades, molecular self-assembly has emerged as one of the main themes in chemistry, biology, and materials science. This book compiles and details cutting-edge research in molecular assemblies ranging from self-organized peptide nanostructures and DNA-chromophore foldamers to supramolecular systems and metal-directed assemblies


Nanoscale Assembly

Nanoscale Assembly

Author: Wilhelm T.S. Huck

Publisher: Springer Science & Business Media

Published: 2006-07-11

Total Pages: 249

ISBN-13: 0387256563

DOWNLOAD EBOOK

Nanotechnology has received tremendous interest over the last decade, not only from the scientific community but also from a business perspective and from the general public. Although nanotechnology is still at the largely unexplored frontier of science, it has the potential for extremely exciting technological innovations that will have an enormous impact on areas as diverse as information technology, medicine, energy supply and probably many others. The miniturization of devices and structures will impact the speed of devices and information storage capacity. More importantly, though, nanotechnology should lead to completely new functional devices as nanostructures have fundamentally different physical properties that are governed by quantum effects. When nanometer sized features are fabricated in materials that are currently used in electronic, magnetic, and optical applications, quantum behavior will lead to a set of unprecedented properties. The interactions of nanostructures with biological materials are largely unexplored. Future work in this direction should yield enabling technologies that allows the study and direct manipulation of biological processes at the (sub) cellular level.


Self-assembling Biomaterials

Self-assembling Biomaterials

Author: Helena S. Azevedo

Publisher: Woodhead Publishing

Published: 2018-04-17

Total Pages: 614

ISBN-13: 0081020120

DOWNLOAD EBOOK

Self-assembling biomaterials: molecular design, characterization and application in biology and medicine provides a comprehensive coverage on an emerging area of biomaterials science, spanning from conceptual designs to advanced characterization tools and applications of self-assembling biomaterials, and compiling the recent developments in the field. Molecular self-assembly, the autonomous organization of molecules, is ubiquitous in living organisms and intrinsic to biological structures and function. Not surprisingly, the exciting field of engineering artificial self-assembling biomaterials often finds inspiration in Biology. More important, materials that self-assemble speak the language of life and can be designed to seamlessly integrate with the biological environment, offering unique engineering opportunities in bionanotechnology. The book is divided in five parts, comprising design of molecular building blocks for self-assembly; exclusive features of self-assembling biomaterials; specific methods and techniques to predict, investigate and characterize self-assembly and formed assemblies; different approaches for controlling self-assembly across multiple length scales and the nano/micro/macroscopic properties of biomaterials; diverse range of applications in biomedicine, including drug delivery, theranostics, cell culture and tissue regeneration. Written by researchers working in self-assembling biomaterials, it addresses a specific need within the Biomaterials scientific community. - Explores both theoretical and practical aspects of self-assembly in biomaterials - Includes a dedicated section on characterization techniques, specific for self-assembling biomaterials - Examines the use of dynamic self-assembling biomaterials


Peptide-based Biomaterials

Peptide-based Biomaterials

Author: Mustafa O. Guler

Publisher: Royal Society of Chemistry

Published: 2020-11-18

Total Pages: 413

ISBN-13: 1839161159

DOWNLOAD EBOOK

Research and new tools in biomaterials development by using peptides are currently growing, as more functional and versatile building blocks are used to design a host of functional biomaterials via chemical modifications for health care applications. It is a field that is attracting researchers from across soft matter science, molecular engineering and biomaterials science. Covering the fundamental concepts of self-assembly, design and synthesis of peptides, this book will provide a solid introduction to the field for those interested in developing functional biomaterials by using peptide derivatives. The bioactive nature of the peptides and their physical properties are discussed in various applications in biomedicine. This book will help researchers and students working in biomaterials and biomedicine fields and help their understanding of modulating biological processes for disease diagnosis and treatments.