Biotreatment of Agricultural Wastewater is based on a symposium held in Lake Arrowhead, California in 1986, supported by a coalition of federal, state, and local agencies, and sponsored by the engineering firm of Swanson/Oswald Associates (Lafayette, California) and the research and development firms of Aquasearch, Inc. and EcoTechnology Corp. (La Jolla, California). This book is a synopsis of topics covered by world renowned experts on the biology and aquaculture of algae and bacteria and on the engineering of industrial scale systems for biological wastewater treatment and economists that were gathered to evaluate historically proven systems and develop new and innovative approaches to the biological treatment of agriculture wastewater.
The contamination of environment and water resources by Selenium (Se) and its oxyanions from various sources are emerging contaminants of significant health and environmental concern. The primary sources include agricultural drainage water, mine drainage, residues from fossil fuels, thermoelectric power plants, oil refineries, and metal ores. Various methods and technologies have been developed which focus on the treatment of selenium-containing waters and wastewater. High concentrations of selenium in water cause various adverse impact to human health, such as carcinogenic, genotoxic, and cytotoxic effects. But in the lower concentrations, it is a useful constituent of the biological system. The range between toxicity and deficiency of selenium is minimal (40 to 400 μg per day), due to its dual nature. Selenium Contamination in Water contains the latest status and information on selenium’s origin, its chemistry and its toxicity to humans. The book represents a comprehensive and advanced reference book for students, researchers, practitioners, and policymakers in working in the field of metalloids, in particular selenium. A special emphasis is given on its geological distribution, monitoring techniques, and remedial technologies. As such, the authors critically analyze the various techniques used for the monitoring and removal of selenium from water. Featuring chapters arranged according to the major themes of the latest research, with specific case-studies from industrial experiences of selenium detection and removal, Selenium Contamination in Water will be particularly valued by researchers, practitioners, and policymakers in working in the field of metalloids including selenium.
Emerging contaminants are chemical and biological agents for which there is growing concern about their potential health and environmental effects. The threat lies in the fact that the sources, fate and toxicology of most of these compounds have not yet been studied. Emerging contaminants, therefore, include a large number of both recently discovered and well-known compounds such as rare earth elements, viruses, bacteria, nanomaterials, microplastics, pharmaceuticals, endocrine disruptors, hormones, personal care products, cosmetics, pesticides, surfactants and industrial chemicals. Emerging contaminants have been found in many daily products, and some of them accumulate in the food chain. Correlations have been observed between aquatic pollution by emerging contaminants and discharges from wastewater treatment plants. Most actual remediation methods are not effective at removing emerging contaminants. This second volume presents comprehensive knowledge on emerging contaminants with a focus on remediation.
This book features the reduction and removal of selenium in wastewater via bioremediation. Arranged over five chapters, this book provides information regarding the interaction between micro-organisms and selenium, and it also explains the biogeochemistry of selenium in engineered ecosystems designed for wastewater treatment. The analytical approaches currently adopted by the scientific community are also described and discussed. Readers will find examples of the biological treatment of selenium contaminated wastewater, and discover a concise overview of selenium removal processes that are currently implemented at lab-scale as well as at industrial scale.
This book covers many facets of plant selenium (Se) accumulation: molecular genetics, biochemistry, physiology, and ecological and evolutionary aspects. Broader impacts and applications of plant Se accumulation also receive attention. Plant Se accumulation is very relevant for environmental and human health. Selenium is both essential at low levels and toxic at high levels, and both Se deficiency and toxicity are problems worldwide. Selenium can positively affect crop productivity and nutritional value. Plants may also be used to clean up excess environmental Se. Selenium in plants has profound ecological impact, and likely contributes to Se movement in ecosystems and global Se cycling.
Heavy metals always pose serious ecological risks when released into the environment due to their elemental non-degradable nature, regardless of their chemical form. This calls for the development of efficient and low-cost effluent treatment and metal recuperation technologies for contaminated waste water, not only because regulatory limits need to be met but also because the waste itself can be a resource for certain precious metals. Biosorption is a general property of living and dead biomass to rapidly bind and abiotically concentrate inorganic or organic compounds from even very diluted aqueous solutions. As a specific term, biosorption is a method that utilizes materials of biological origin – biosorbents formulated from non-living biomass - for the removal of target substances from aqueous solutions. Recent research on biosorption provides a solid understanding of the mechanism underlying microbial biosorption of heavy metals and related elements. This book gathers review articles analyzing current views on the mechanism and (bio)chemistry of biosorption, the performance of bacterial, fungal and algal biomass, and the practical aspects of biosorbent preparation and engineering. It also reviews the physico-chemical evaluations of biosorbents and modelling of the process as well as the importance of biosorption during heavy metal removal using living cells. It is a reference work for scientists, environmental safety engineers and R&D specialists who wish to further promote biosorption research and use the accumulated knowledge to develop and build industrial applications of biosorption in heavy metal separation technologies.